Skip to main content

Spatial Dynamics

  • Chapter
  • First Online:
Multiple Time Scale Dynamics

Part of the book series: Applied Mathematical Sciences ((AMS,volume 191))

  • 6099 Accesses

Abstract

In this chapter, the main topic is traveling waves for time-dependent spatially extended systems in one space dimension. Note that we have already extensively discussed various techniques to prove the existence of waves for partial differential equations (PDEs); see, e.g., Chapter 6 Hence, we focus here on further topics beyond the existence of waves in PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. P. Ashwin, M.V. Bartuccelli, T.J. Bridges, and S.A. Gourley. Travelling fronts for the KPP equation with spatio-temporal delay. Zeitschr. Angewand. Math. Phys., 53(1):103–122, 2002.

    MATH  MathSciNet  Google Scholar 

  2. S. Ai, S.-N. Chow, and Y. Yi. Travelling wave solutions in a tissue interaction model for skin pattern formation. J. Dyn. Diff. Eq., 15(2):517–534, 2003.

    MATH  MathSciNet  Google Scholar 

  3. E.O. Alzahrani, F.A. Davidson, and N. Dodds. Reversing invasion in bistable systems. J. Math. Biol., 65:1101–1124, 2012.

    MATH  MathSciNet  Google Scholar 

  4. G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.

    Google Scholar 

  5. J.C. Alexander, R.A. Gardner, and C.K.R.T. Jones. A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math., 410:167–212, 1990.

    MATH  MathSciNet  Google Scholar 

  6. Z. Artstein, C.W. Gear, I.G. Kevrekidis, M. Slemrod, and E.S. Titi. Analysis and computation of a discrete KdV-Burgers type equation with fast dispersion and slow diffusion. SIAM J. Numer. Anal., 49(5):2124–2143, 2011.

    MATH  MathSciNet  Google Scholar 

  7. M. Alfaro, D. Hilhorst, and H. Matano. The singular limit of the Allen–Cahn equation and the FitzHugh–Nagumo system. J. Differen. Equat., 245(2):505–565, 2008.

    MATH  MathSciNet  Google Scholar 

  8. S. Ai. Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Differential Equat., 232(1):104–133, 2007.

    MATH  MathSciNet  Google Scholar 

  9. S. Ai. Traveling waves for a model of a fungal disease over a vineyard. SIAM J. Math. Anal., 42(2): 833–856, 2010.

    MATH  MathSciNet  Google Scholar 

  10. F. Achleitner and C. Kuehn. On bounded positive stationary solutions for a nonlocal Fisher-KPP equation. arXiv:1307.3480, pages 1–20, 2013.

    Google Scholar 

  11. S.B. Angenent, J. Mallet-Paret, and L.A. Peletier. Stable transition layers in a semilinear boundary value problem. J. Differential Equat., 67(2):212–242, 1987.

    MATH  MathSciNet  Google Scholar 

  12. F. Achleitner and P. Szmolyan. Saddle-node bifurcation of viscous profiles. Physica D, 241(20): 1703–1717, 2012.

    MATH  MathSciNet  Google Scholar 

  13. J.W. Barker. Interactions of fast and slow waves in hyperbolic systems with two time scales. Math. Methods Appl. Sci., 5(3):292–307, 1983.

    MATH  MathSciNet  Google Scholar 

  14. J.W. Barker. Interactions of fast and slow waves in problems with two time scales. SIAM J. Math. Anal., 15(3):500–513, 1984.

    MATH  MathSciNet  Google Scholar 

  15. E. Brunet and B. Derrida. Shift in the velocity front due to a cutoff. Phys. Rev. E, 56(3):2597–2604, 1997.

    MathSciNet  Google Scholar 

  16. M. Beck, A. Doelman, and T.J. Kaper. A geometric construction of traveling waves in a bioremediation model. J. Nonlinear Sci., 16(4):329–349, 2006.

    MATH  MathSciNet  Google Scholar 

  17. V. Booth and T. Erneux. Understanding propagation failure as a slow capture near a limit point. SIAM J. Appl. Math., 55(5):1372–1389, 1995.

    MATH  MathSciNet  Google Scholar 

  18. M. Beck, C.K.R.T. Jones, D. Schaeffer, and M. Wechselberger. Electrical waves in a one-dimensional model of cardiac tissue. SIAM J. Appl. Dyn. Syst., 7(4):1558–1581, 2008.

    MATH  MathSciNet  Google Scholar 

  19. H. Berestycki, B. Nicolaenko, and B. Scheurer. Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal., 16(6):1207–1242, 1985.

    MATH  MathSciNet  Google Scholar 

  20. A. Bose. A geometric approach to singularly perturbed nonlocal reaction–diffusion equations. SIAM J. Math. Anal., 31(2):431–454, 2000.

    MATH  Google Scholar 

  21. P.C. Bressloff. Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor., 45:(033001), 2012.

    Google Scholar 

  22. W.-J. Beyn, S. Selle, and V. Thümmler. Freezing multipulses and multifronts. SIAM J. Appl. Dyn. Syst., 7(2):577–608, 2008.

    MATH  MathSciNet  Google Scholar 

  23. M. Beck and C.E. Wayne. Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity. SIAM Rev., 53(1):129–153, 2011.

    MATH  MathSciNet  Google Scholar 

  24. A. Carpio and L.L. Bonilla. Pulse propagation in discrete systems of coupled excitable cells. SIAM J. Appl. Math., 63(2):619–635, 2002.

    MATH  MathSciNet  Google Scholar 

  25. S.-N. Chow. Lattice dynamical systems. In J.W. Macki and P. Zecca, editors, Dynamical Systems, pages 1–102. Springer, 2003.

    Google Scholar 

  26. G.A. Cassatella Contra and D. Levi. Discrete multiscale analysis: a biatomic lattice system. J. Nonlinear Math. Phys., 17:357–377, 2010.

    MATH  MathSciNet  Google Scholar 

  27. N. Costanzino, V. Manukian, and C.K.R.T. Jones. Solitary waves of the regularized short pulse and Ostrovsky equations. SIAM J. Math. Anal., 41(5):2088–2106, 2009.

    MATH  MathSciNet  Google Scholar 

  28. D. Cai, D.W. McLaughlin, and K.T.R. Mc Laughlin. The nonlinear Schrödinger equation as both a PDE and a dynamical system. In B. Fiedler, editor, Handbook of Dynamical Systems 2, pages 599–675. Elsevier, 2002.

    Google Scholar 

  29. S. Coombes. Waves, bumps, and patterns in neural field theories. Biol. Cybern., 93:91–108, 2005.

    MATH  MathSciNet  Google Scholar 

  30. C.M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer, 2010.

    Google Scholar 

  31. G. Derks, A. Doelman, S.A. van Gils, and T. Visser. Travelling waves in a singularly perturbed sine-Gordon equation. Physica D, 180:40–70, 2003.

    MATH  MathSciNet  Google Scholar 

  32. A. Doelman, W. Eckhaus, and T.J. Kaper. Slowly modulated two-pulse solutions in the Gray-Scott Model I: asymptotic construction and stability. SIAM J. Appl. Math., 61(3):1080–1102, 2000.

    MATH  MathSciNet  Google Scholar 

  33. A. Doelman, W. Eckhaus, and T.J. Kaper. Slowly modulated two-pulse solutions in the Gray–Scott Model II: geometric theory, bifurcations, and splitting dynamics. SIAM J. Appl. Math., 61(6): 2036–2062, 2006.

    Google Scholar 

  34. A. Doelman, R.A. Gardner, and T.J. Kaper. Large stable pulse solutions in reaction–diffusion equations. Indiana Univ. Math. J., 50(1):443–507, 2001.

    MATH  MathSciNet  Google Scholar 

  35. A. Doelman, R.A. Gardner, and T.J. Kaper. A Stability Index Analysis of 1-D Patterns of the Gray-Scott Model, volume 737 of Mem. Amer. Math. Soc. AMS, 2002.

    Google Scholar 

  36. A. Doelman, G. Hek, and N. Valkhoff. Stabilization by slow diffusion in a real Ginzburg–Landau system. J. Nonlinear Sci., 14(3):237–278, 2004.

    MATH  MathSciNet  Google Scholar 

  37. A. Doelman, G. Hek, and N. Valkhoff. Algebraically decaying pulses in a Ginzburg–Landau system with a neutrally stable mode. Nonlinearity, 20:357–389, 2007.

    MATH  MathSciNet  Google Scholar 

  38. A. Doelman, D. Iron, and Y. Nishiura. Destabilization of fronts in a class of bistable systems. SIAM J. Math. Anal., 35(6):1420–1450, 2004.

    MATH  MathSciNet  Google Scholar 

  39. A. Doelman and T.J. Kaper. Semistrong pulse interactions in a class of coupled reaction–diffusion equations. SIAM J. Appl. Dyn. Syst., 2(1):53–96, 2003.

    MATH  MathSciNet  Google Scholar 

  40. A. Doelman, T.J. Kaper, and K. Promislow. Nonlinear asymptotic stability of the semistrong pulse dynamics in a regularized Gierer–Meinhardt model. SIAM J. Math. Anal., 38(6):1760–1787, 2007.

    MATH  MathSciNet  Google Scholar 

  41. C.R. Doering, C. Mueller, and P. Smereka. Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality. Physica A, 325:243–259, 2003.

    MATH  MathSciNet  Google Scholar 

  42. J.D. Dockery. Existence of standing pulse solutions for an excitable activator-inhibitory system. J. Dyn. Diff. Eq., 4(2):231–257, 1992.

    MATH  MathSciNet  Google Scholar 

  43. A. Doelman. Traveling waves in the complex Ginzburg–Landau equation. J. Nonlinear Sci., 3(1): 225–266, 1993.

    MATH  MathSciNet  Google Scholar 

  44. A. Doelman. Breaking the hidden symmetry in the Ginzburg–Landau equation. Physica D, 97(4): 398–428, 1996.

    MATH  MathSciNet  Google Scholar 

  45. F. Dumortier, N. Popovic, and T.J. Kaper. The asymptotic critical wave speed in a family of scalar reaction–diffusion equations. J. Math. Anal. Appl., 326(2):1007–1023, 2007.

    MATH  MathSciNet  Google Scholar 

  46. F. Dumortier, N. Popovic, and T.J. Kaper. The critical wave speed for the Fisher–Kolmogorov–Petrowskii–Piscounov equation with cut-off. Nonlinearity, 20(4):855–877, 2007.

    MATH  MathSciNet  Google Scholar 

  47. F. Dumortier, N. Popovic, and T.J. Kaper. A geometric approach to bistable front propagation in scalar reaction–diffusion equations with cut-off. Physica D, 239(20):1984–1999, 2010.

    MATH  MathSciNet  Google Scholar 

  48. A. Doelman, B. Sandstede, A. Scheel, and G. Schneider. The dynamics of modulated wavetrains. Memoirs of the AMS, 199(934):1–105, 2009.

    MathSciNet  Google Scholar 

  49. A. Doelman, P. van Heijster, and T.J. Kaper. Pulse dynamics in a three-component system: existence analysis. J. Dyn. Diff. Eq., 21:73–115, 2009.

    MATH  Google Scholar 

  50. A. Doelman, P. van Heijster, and T.J. Kaper. An explicit theory for pulses in two component, singularly perturbed, reaction–diffusion equations. J. Dyn. Diff. Eq., pages 1–42, 2013. accepted, to appear.

    Google Scholar 

  51. J.W. Evans and J.A. Feroe. Local stability of the nerve impulse. Math. Biosci., 37(1):23–50, 1977.

    MATH  Google Scholar 

  52. G.B. Ermentrout and J.B. McLeod. Existence and uniqueness of travelling waves for a neural network. Proc. R. Soc. Edinburgh A, 123(3):461–478, 1993.

    MATH  MathSciNet  Google Scholar 

  53. T. Erneux and G. Nicolis. Propagating waves in discrete bistable reaction–diffusion systems. Physica D, 67(1):237–244, 1993.

    MATH  MathSciNet  Google Scholar 

  54. C. Elmer and E.S. Van Vleck. Spatially discrete FitzHugh–Nagumo equations. SIAM J. Appl. Math., 65(4):1153–1174, 2005.

    MATH  MathSciNet  Google Scholar 

  55. J. Evans. Nerve axon equations III: stability of nerve impulses. Indiana U. Math. J., 22:577–594, 1972.

    MATH  Google Scholar 

  56. L.C. Evans. Partial Differential Equations. AMS, 2002.

    Google Scholar 

  57. U. Ebert and W. van Saarloos. Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D, 146:1–99, 2000.

    MATH  MathSciNet  Google Scholar 

  58. P.C. Fife. Dynamics of internal layers and diffusive interfaces. SIAM, 1988.

    Google Scholar 

  59. R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7:353–369, 1937.

    Google Scholar 

  60. H. Fan and X.-B. Lin. Standing waves for phase transitions in a spherically symmetric nozzle. SIAM J. Math. Anal., 44(1):405–436, 2012.

    MATH  MathSciNet  Google Scholar 

  61. G. Flores. Stability analysis for the slow traveling pulse of the FitzHugh–Nagumo system. SIAM J. Math. Anal., 22(2):392–399, 1991.

    MATH  MathSciNet  Google Scholar 

  62. P. Fife and J.B. McLeod. The approach of solutions nonlinear diffusion equations to travelling front solutions. Arch. Rational Mech. Anal., 65:335–361, 1977.

    MATH  MathSciNet  Google Scholar 

  63. A. Friedman. Partial Differential Equations of Parabolic Type. Dover, 1992.

    Google Scholar 

  64. H. Freistühler and P. Szmolyan. Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal., 26(1):112–128, 1995.

    MATH  MathSciNet  Google Scholar 

  65. H. Freistühler and P. Szmolyan. Spectral stability of small shock waves. Arch. Rational Mech. Anal., 164:287–309, 2002.

    MATH  Google Scholar 

  66. H. Freistühler and P. Szmolyan. Spectral stability of small-amplitude viscous shock waves in several space dimensions. Arch. Rational Mech. Anal., 195(2):353–373, 2010.

    MATH  Google Scholar 

  67. R. Gardner. Existence of travelling wave solutions of predator–prey systems via the connection index. SIAM J. Appl. Math., 44(1):56–79, 1984.

    MATH  MathSciNet  Google Scholar 

  68. S.A. Gourley and M.A.J. Chaplain. Travelling fronts in a food-limited population model with time delay. Proc. Roy. Soc. Edinburgh Sect. A, 132:75–89, 2002.

    MATH  MathSciNet  Google Scholar 

  69. A. Ghazaryan, P. Gordon, and C.K.R.T. Jones. Traveling waves in porous media combustion: uniqueness of waves for small thermal diffusivity. J. Dyn. Diff. Eq., 19(4):951–966, 2007.

    MATH  MathSciNet  Google Scholar 

  70. A. Ghazaryan. Nonlinear stability of high Lewis number combustion fronts. Indiana Univ. Math. J., 58:181–212, 2009.

    MATH  MathSciNet  Google Scholar 

  71. A. Ghazaryan. On the stability of high Lewis number combustion fronts. Discrete Contin. Dyn. Syst. A, 24:809–826, 2009.

    MATH  MathSciNet  Google Scholar 

  72. A. Ghazaryan. On the existence of high Lewis number combustion fronts. Math. Comput. Simul., 82(6):1133–1141, 2010.

    MathSciNet  Google Scholar 

  73. A. Ghazaryan, J. Humphreys, and J. Lytle. Spectral behavior of combustion fronts with high exothermicity. SIAM J. Appl. Math., 73(1):422–437, 2013.

    MATH  MathSciNet  Google Scholar 

  74. R. Gardner and C.K.R.T. Jones. Stability of travelling wave solutions of diffusive predator–prey systems. Trans. Amer. Math. Soc., 327(2):465–524, 1991.

    MATH  MathSciNet  Google Scholar 

  75. P.P.N. De Groen and G.E. Karadzhov. Exponentially slow travelling waves on a finite interval for Burgers’-type equation. Electron. J. Differential Equat., 1980(30):1–38, 1998.

    Google Scholar 

  76. P.P.N. De Groen and G.E. Karadzhov. Slow travelling waves on a finite interval for Burgers’-type equations. J. Comput. Appl. Math., 132:155–189, 2001.

    MATH  MathSciNet  Google Scholar 

  77. S.A. Gourley. Travelling fronts in the diffusive Nicholson’s blowflies equation with distributed delay. Math. Comput. Model., 32(7):843–853, 2000.

    MATH  MathSciNet  Google Scholar 

  78. S.A. Gourley and S. Ruan. Convergence and travelling fronts in functional differential equations with nonlocal terms: a competition model. SIAM J. Math. Anal., 35(3):806–822, 2003.

    MATH  MathSciNet  Google Scholar 

  79. A. Ghazaryan, S. Schecter, and P.L. Simon. Gasless combustion fronts with heat loss. SIAM J. Appl. Math., 73(3):1303–1326, 2013.

    MATH  MathSciNet  Google Scholar 

  80. G. Haller. Homoclinic jumping in the perturbed nonlinear Schrödinger equation. Comm. Pure Appl. Math., 152(1):1–47, 1999.

    MathSciNet  Google Scholar 

  81. M. Holzer, A. Doelman, and T.J. Kaper. Existence and stability of traveling pulses in a reaction–diffusion-mechanics system. J. Nonlinear Sci., 23(1):129–177, 2013.

    MATH  MathSciNet  Google Scholar 

  82. G. Hek. Fronts and pulses in a class of reaction–diffusion equations: a geometric singular perturbation approach. Nonlinearity, 14(1):35–72, 2001.

    MATH  MathSciNet  Google Scholar 

  83. D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin Heidelberg, Germany, 1981.

    MATH  Google Scholar 

  84. J.M. Hong, C.-H. Hsu, and B.-C. Huang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Comm. Pure Appl. Anal., 12(3):1501–1526, 2013.

    MATH  MathSciNet  Google Scholar 

  85. J.K. Hale and X.-B. Lin. Multiple internal layer solutions generated by spatially oscillatory perturbations. J. Differential Equat., 154(2):364–418, 1999.

    MATH  MathSciNet  Google Scholar 

  86. M. Hairer and J.C. Mattingly. Slow energy dissipation in anharmonic oscillator chains. Comm. Pure. Appl. Math., 62(8):999–1032, 2009.

    MATH  MathSciNet  Google Scholar 

  87. F. Hamel and N. Nadirashvili. Travelling fronts and entire solutions of the Fisher–KPP equation in \(\mathbb{R}^{N}\). Arch. Ration. Mech. Anal., 157:91–163, 2001.

    MATH  MathSciNet  Google Scholar 

  88. H.J. Hupkes, D. Pelinovsky, and B. Sandstede. Propagation failure in the discrete Nagumo equation. Proc. Amer. Math. Soc., 139:3537–3551, 2011.

    MATH  MathSciNet  Google Scholar 

  89. J.K. Hale, L.A. Peletier, and W.C. Troy. Exact homoclinic and heteroclinic solutions of the Gray–Scott model for autocatalysis. SIAM J. Appl. Math., 61(1):102–130, 2000.

    MATH  MathSciNet  Google Scholar 

  90. H.J. Hupkes and B. Sandstede. Traveling pulse solutions for the discrete FitzHugh–Nagumo system. SIAM J. Appl. Dyn. Sys., 9(3):827–882, 2010.

    MATH  MathSciNet  Google Scholar 

  91. M. Holzer and A. Scheel. A slow pushed front in a Lotka–Volterra competition model. Nonlinearity, 25(7):2151–2179, 2012.

    MATH  MathSciNet  Google Scholar 

  92. H.J. Hupkes and B. Sandstede. Stability of traveling pulse solutions for the discrete FitzHugh–Nagumo system. Trans. Amer. Math. Soc., 365:251–301, 2013.

    MATH  MathSciNet  Google Scholar 

  93. G. Hek and N. Valkhoff. Pulses in a complex Ginzburg–Landau system: persistence under coupling with slow diffusion. Physica D, 232(1):62–85, 2007.

    MATH  MathSciNet  Google Scholar 

  94. J. Jalics. Slow waves in mutually inhibitory neuronal networks. Physica D, 192:95–122, 2004.

    MATH  MathSciNet  Google Scholar 

  95. C.K.R.T. Jones. Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans. Amer. Math. Soc., 286(2): 431–469, 1984.

    MATH  MathSciNet  Google Scholar 

  96. T. Kapitula. Stability analysis of pulses via the Evans function: dissipative systems. In Dissipative Solitons, volume 661 of Lecture Notes in Physics, pages 407–427. Springer, 2005.

    Google Scholar 

  97. A. Karma. Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett., 71:1103–1106, 1993.

    MATH  MathSciNet  Google Scholar 

  98. T. Kato. Perturbation Theory for Linear Operators. Springer, 1980.

    Google Scholar 

  99. Y.N. Kyrychko and K.B. Blyuss. Persistence of travelling waves in a generalized Fisher equation. Phys. Lett. A, 373(6):668–674, 2009.

    MATH  Google Scholar 

  100. Y.N. Kyrychko, M.V. Bartuccelli, and K.B. Blyuss. Persistence of travelling wave solutions of a fourth order diffusion system. J. Comp. Appl. Math., 176(2):433–443, 2005.

    MATH  MathSciNet  Google Scholar 

  101. J.P. Keener. Waves in excitable media. SIAM J. Appl. Math., 39(3):528–548, 1980.

    MATH  MathSciNet  Google Scholar 

  102. J.P. Keener. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math., 47:556–572, 1987.

    MATH  MathSciNet  Google Scholar 

  103. T. Kolokolnikov, T. Erneux, and J. Wei. Mesa-type patterns in the one-dimensional Brusselator and their stability. Physica D, 214(1):63–77, 2006.

    MATH  MathSciNet  Google Scholar 

  104. J.R. King. Wavespeed selection in the heterogeneous Fisher equation: slowly varying inhomogeneity. Networks and Heterogeneous Media, 8(1):343–378, 2013.

    MATH  MathSciNet  Google Scholar 

  105. B. Katzengruber, M. Krupa, and P. Szmolyan. Bifurcation of traveling waves in extrinsic semiconductors. Physica D, 144(1): 1–19, 2000.

    MATH  MathSciNet  Google Scholar 

  106. T. Kapitula, J.N. Kutz, and B. Sandstede. The Evans function for nonlocal equations. Indiana U. Math. J., 53(4):1095–1126, 2004.

    MATH  MathSciNet  Google Scholar 

  107. R. Knobel. An Introduction to the Mathematical Theory of Waves. AMS, 2000.

    Google Scholar 

  108. T. Kapitula and K. Promislow. Spectral and Dynamical Stability of Nonlinear Waves. Springer, 2013.

    Google Scholar 

  109. A. Kolmogorov, I. Petrovskii, and N. Piscounov. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In V.M. Tikhomirov, editor, Selected Works of A. N. Kolmogorov I, pages 248–270. Kluwer, 1991. Translated by V. M. Volosov from Bull. Moscow Univ., Math. Mech. 1, 1–25, 1937.

    Google Scholar 

  110. T. Kapitula and J. Rubin. Existence and stability of standing hole solutions to complex Ginzburg–Landau equations. Nonlinearity, 13(1):77–112, 2000.

    MATH  MathSciNet  Google Scholar 

  111. C. Kuehn and M.G. Riedler. Large deviations for nonlocal stochastic neural fields. J. Math. Neurosci., 4(1):1–33, 2014.

    MathSciNet  Google Scholar 

  112. T. Kolokolnikov, W. Sun, M.J. Ward, and J. Wei. The stability of a stripe for the Gierer–Meinhardt model and the effect of saturation. SIAM J. Appl. Dyn. Syst., 5(2):313–363, 2006.

    MATH  MathSciNet  Google Scholar 

  113. B.L. Keyfitz and C. Tsikkou. Conserving the wrong variables in gas dynamics: a Riemann solution with singular shocks. Quart. Appl. Math., 70:407–436, 2012.

    MATH  MathSciNet  Google Scholar 

  114. J.P. Laplante and T. Erneux. Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem., 96(12): 4931–4934, 1992.

    Google Scholar 

  115. R.J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser, 1992.

    Google Scholar 

  116. Y. Li. Homoclinic tubes in discrete nonlinear Schrödinger equation under Hamiltonian perturbations. Nonlinear Dyn., 31(4):393–434, 2003.

    Google Scholar 

  117. X.-B. Lin. Construction and asymptotic stability of structurally stable internal layer solutions. Trans. Amer. Math. Soc., 353:2983–3043, 2001.

    MATH  MathSciNet  Google Scholar 

  118. X.-B. Lin. Slow eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws: an analytic approach. J. Dyn. Diff. Eq., 18(1):1–52, 2006.

    MATH  Google Scholar 

  119. W. Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discr. Cont. Dyn. Syst., 10(4):871–884, 2004.

    MATH  Google Scholar 

  120. J.G. Laforgue and R.E. O’Malley. Supersensitive boundary value problems. In Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, pages 215–223. Springer, 1993.

    Google Scholar 

  121. D.J.B. Lloyd and H. O’Farrell. On localised hotspots of an urban crime model. Physica D, 253:23–39, 2013.

    MATH  MathSciNet  Google Scholar 

  122. X.-B. Lin and S. Schecter. Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws. SIAM J. Math. Anal., 35(4):884–921, 2003.

    MATH  MathSciNet  Google Scholar 

  123. C.R. Laing and W.C. Troy. PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst., 2(3):487–516, 2003.

    MATH  MathSciNet  Google Scholar 

  124. C.R. Laing, W.C. Troy, B. Gutkin, and B. Ermentrout. Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math., 63(1):62–97, 2002.

    MATH  MathSciNet  Google Scholar 

  125. G. Lv and M. Wang. Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model. Nonl. Anal.: Real World Appl., 11(3):2035–2043, 2010.

    Google Scholar 

  126. K. Maginu. Stability of periodic travelling wave solutions of a nerve conduction equation. J. Math. Biol., 6(1):49–57, 1978.

    MATH  MathSciNet  Google Scholar 

  127. K. Maginu. Existence and stability of periodic travelling wave solutions to Nagumo’s nerve equation. J. Math. Biol., 10(2):133–153, 1980.

    MATH  MathSciNet  Google Scholar 

  128. K. Maginu. Geometrical characteristics associated with stability and bifurcations of periodic travelling waves in reaction–diffusion systems. SIAM J. Appl. Math., 45(5):750–774, 1985.

    MATH  MathSciNet  Google Scholar 

  129. M.B.A. Mansour. Existence of traveling wave solutions in a hyperbolic-elliptic system of equations. Comm. Math. Sci., 4(4):731–739, 2006.

    MATH  Google Scholar 

  130. M.B.A. Mansour. Existence of traveling wave solutions for a nonlinear dissipative-dispersive equation. Appl. Math. Mech., 30(4):513–516, 2009.

    MATH  MathSciNet  Google Scholar 

  131. M.B.A. Mansour. Travelling wave solutions for a singularly perturbed Burgers-KdV equation. Pramana, 73(5):799–806, 2009.

    Google Scholar 

  132. M.B.A. Mansour. A geometric construction of traveling waves in a generalized nonlinear dispersive–dissipative equation. J. Geom. Phys., pages 1–11, 2013. in press.

    Google Scholar 

  133. V. Manukian, N. Costanzino, C.K.R.T. Jones, and B. Sandstede. Existence of multi-pulses of the regularized short-pulse and Ostrovsky equations. J. Dyn. Diff. Eq., 21:607–622, 2009.

    MATH  MathSciNet  Google Scholar 

  134. D.S. Morgan, A. Doelman, and T.J. Kaper. Stationary periodic patterns in the 1D Gray-Scott model. Math. Appl. Anal., 7(1):105–150, 2000.

    MATH  MathSciNet  Google Scholar 

  135. G.S. Medvedev, T.J. Kaper, and N. Kopell. A reaction–diffusion system with periodic front dynamics. SIAM J. Appl. Math., 60(5):1601–1638, 2000.

    MATH  MathSciNet  Google Scholar 

  136. K. Manktelow, M.J. Leamy, and M. Ruzzene. Multiple scales analysis of wave-wave interactions in a cubically nonlinear atomic chain. Nonlinear Dyn., 63:193–203, 2011.

    MATH  MathSciNet  Google Scholar 

  137. J. Mallet-Paret. The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Diff. Eq., 8:49–128, 1999.

    MathSciNet  Google Scholar 

  138. P. De Maesschalck and N. Popovic. Gevrey properties of the asymptotic critical wave speed in a family of scalar reaction–diffusion equations. J. Math. Anal. Appl., 386(2):542–558, 2012.

    MATH  MathSciNet  Google Scholar 

  139. C. Melcher and J.D.M. Rademacher. Patterns formation in axially symmetric Landau-Lifshitz-Gilbert-Slonczewski equations. arXiv:1309.5523, pages 1–27, 2013.

    Google Scholar 

  140. J.W. Milnor and J.D. Stasheff. Characteristic Classes. Princeton University Press, 1974.

    Google Scholar 

  141. D. Marchesin and S. Schecter. Oxidation heat pulses in two-phase expansive flow in porous media. Z. Angew. Math. Phys., 54(1):48–83, 2003.

    MATH  MathSciNet  Google Scholar 

  142. C.C. Mitchell and D.G. Schaeffer. A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol., 65:767–793, 2003.

    Google Scholar 

  143. J.C. Da Mota and S. Schecter. Combustion fronts in a porous medium with two layers. J. Dyn. Diff. Eq., 18(3):615–665, 2006.

    MATH  Google Scholar 

  144. V. Manukian and S. Schecter. Travelling waves for a thin liquid film with surfactant on an inclined plane. Nonlinearity, 22(1):85–122, 2009.

    MATH  MathSciNet  Google Scholar 

  145. Y. Nishiura and H. Fujii. Stability of singularly perturbed solutions to systems of reaction–diffusion equations. SIAM J. Math. Anal., 18(6):1726–1770, 1987.

    MATH  MathSciNet  Google Scholar 

  146. S. Nii. Stability of travelling multiple-front (multiple-back) wave solutions of the FitzHugh–Nagumo equations. SIAM J. Math. Anal., 28(5):1094–1112, 1997.

    MATH  MathSciNet  Google Scholar 

  147. Y. Nishiura. Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit. In Dynamics Reported, pages 25–103. Springer, 1994.

    Google Scholar 

  148. Y. Nishiura, M. Mimura, H. Ikeda, and H. Fujii. Singular limit analysis of stability of traveling wave solutions in bistable reaction–diffusion systems. SIAM J. Math. Anal., 21(1):85–122, 1990.

    MATH  MathSciNet  Google Scholar 

  149. J. Ockendon, S. Howison, A. Lacey, and A. Movchan. Applied Partial Differential Equations. OUP, 2003.

    Google Scholar 

  150. P. Ortoleva and J. Ross. Theory of propagation of discontinuities in kinetic systems with multiple time scales: fronts, front multiplicity, and pulses. J. Chem. Phys., 63:3398–3408, 1975.

    Google Scholar 

  151. D.J. Pinto and G.B. Ermentrout. Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J. Appl. Math., 62(1):206–225, 2001.

    Google Scholar 

  152. D.J. Pinto and G.B. Ermentrout. Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM J. Appl. Math., 62(1):226–243, 2001.

    Google Scholar 

  153. N. Popović and T.J. Kaper. Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction–diffusion equations. J. Dyn. Diff. Eq., 18(1):103–139, 2006.

    MATH  Google Scholar 

  154. N. Popovic. A geometric analysis of front propagation in a family of degenerate reaction–diffusion equations with cut-off. Z. Angew. Math. Phys., 62(3):405–437, 2011.

    MATH  MathSciNet  Google Scholar 

  155. N. Popovic. A geometric analysis of front propagation in an integrable Nagumo equation with a linear cut-off. Physica D, 241:1976–1984, 2012.

    MathSciNet  Google Scholar 

  156. J.D.M. Rademacher. First and second order semistrong interaction in reaction–diffusion systems. SIAM J. Appl. Dyn. Syst., 12(1):175–203, 2013.

    MATH  MathSciNet  Google Scholar 

  157. I. Ratas and K. Pyragas. Pulse propagation and failure in the discrete FitzHugh–Nagumo model subject to high-frequency stimulation. Phys. Rev. E, 86:046211, 2012.

    Google Scholar 

  158. M. Renardy and R.C. Rogers. An Introduction to Partial Differential Equations. Springer, 2004.

    Google Scholar 

  159. J.-M. Roquejoffre and J.-P. Vila. Stability of ZND detonation waves in the Majda combustion model. Asymp. Anal., 18(3):329–348, 1998.

    MATH  MathSciNet  Google Scholar 

  160. L.G. Reyna and M.J. Ward. Metastable internal layer dynamics for the viscous Cahn–Hilliard equation. Meth. Appl. Anal., 2:285–306, 1995.

    MATH  MathSciNet  Google Scholar 

  161. L.G. Reyna and M.J. Ward. On the exponentially slow motion of a viscous shock. Comm. Pure Appl. Math., 48(2):79–120, 1995.

    MATH  MathSciNet  Google Scholar 

  162. V. Rottschäfer and C.E. Wayne. Existence and stability of traveling fronts in the extended Fisher-Kolmogorov equation. J. Differential Equat., 176:532–560, 2001.

    MATH  Google Scholar 

  163. S. Ruan and D. Xiao. Stability of steady states and existence of travelling waves in a vector-disease model. Proc. R. Soc. Edinburgh A, 134(5):991–1011, 2004.

    MATH  MathSciNet  Google Scholar 

  164. B. Sandstede. Stability of travelling waves. In B. Fiedler, editor, Handbook of Dynamical Systems, volume 2, pages 983–1055. Elsevier, 2001.

    Google Scholar 

  165. S. Schecter. Undercompressive shock waves and the Dafermos regularization. Nonlinearity, 15(4): 1361–1377, 2002.

    MATH  MathSciNet  Google Scholar 

  166. S. Schecter. Existence of Dafermos profiles for singular shocks. J. Differential Equat., 205(1):185–210, 2004.

    MATH  MathSciNet  Google Scholar 

  167. S. Schecter. Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory. J. Dyn. Diff. Eq., 18(1):53–101, 2006.

    MATH  MathSciNet  Google Scholar 

  168. S. Schecter and D. Marchesin. Geometric singular perturbation analysis of oxidation heat pulses for two-phase flow in porous media. Bull. Braz. Math. Soc., 32(3):237–270, 2001.

    MATH  MathSciNet  Google Scholar 

  169. J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, 1994.

    Google Scholar 

  170. S. Schecter, B.J. Plohr, and D. Marchesin. Computation of Riemann solutions using the Dafermos regularization and continuation. Discr. Cont. Dyn. Syst., 10:965–986, 2004.

    MATH  MathSciNet  Google Scholar 

  171. S. Schecter and P. Szmolyan. Composite waves in the Dafermos regularization. J. Dyn. Diff. Eq., 16(3):847–867, 2004.

    MATH  MathSciNet  Google Scholar 

  172. S. Schecter and P. Szmolyan. Persistence of rarefactions under Dafermos regularization: blow-up and an exchange lemma for gain-of-stability turning points. SIAM J. Applied Dynamical Systems, 8(3):822–853, 2009.

    MATH  MathSciNet  Google Scholar 

  173. H. Suzuki and O. Toshiyuki. On the spectra of pulses in a nearly integrable system. SIAM J. Appl. Math., 57(2):485–500, 1997.

    MATH  MathSciNet  Google Scholar 

  174. W.A. Strauss. Partial Differential Equations: An Introduction. John Wiley & Sons, 2008.

    Google Scholar 

  175. X. Sun and M.J. Ward. Dynamics and coarsening of interfaces for the viscous Cahn–Hilliard equation in one spatial dimension. Stud. Appl. Math., 105(3):203–234, 2000.

    MATH  MathSciNet  Google Scholar 

  176. X. Sun, M.J. Ward, and R. Russell. The slow dynamics of two-spike solutions for the Gray-Scott and Gierer–Meinhardt systems: competition and oscillatory instabilities. SIAM J. Appl. Dyn. Syst., 4(4):904–953, 2005.

    MATH  MathSciNet  Google Scholar 

  177. H.L. Smith and X.-Q. Zhao. Traveling waves in a bio-reactor model. Nonl. Anal. Real World Appl., 5(5):895–909, 2004.

    MATH  MathSciNet  Google Scholar 

  178. P. Szmolyan. A singular perturbation analysis of the transient semiconductor-device equations. SIAM J. Appl. Math., 49(4):1122–1135, 1989.

    MATH  MathSciNet  Google Scholar 

  179. P. Szmolyan. Traveling waves in GaAs semiconductors. Physica D, 39(2):393–404, 1989.

    MATH  MathSciNet  Google Scholar 

  180. M. Taniguchi and Y. Nishiura. Instability of planar interfaces in reaction–diffusion systems. SIAM J. Math. Anal., 25(1):99–134, 1994.

    MATH  MathSciNet  Google Scholar 

  181. A.F. Vakakis. Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local essentially nonlinear attachment. Nonlinear Dyn., 61:443–463, 2010.

    MATH  MathSciNet  Google Scholar 

  182. F. Veerman and A. Doelman. Pulses in a Gierer–Meinhardt equation with a slow nonlinearity. SIAM J. Appl. Dyn. Syst., 12(1):28–60, 2013.

    MATH  MathSciNet  Google Scholar 

  183. P. Várkonyi and P. Holmes. On synchronization and traveling waves in chains of relaxation oscillators with an application to Lamprey CPG. SIAM J. Appl. Dyn. Syst., 7(3):766–794, 2008.

    MATH  MathSciNet  Google Scholar 

  184. P. van Heijster, A. Doelman, and T.J. Kaper. Pulse dynamics in a three-component system: stability and bifurcations. Physica D, 237(24):3335–3368, 2008.

    MATH  MathSciNet  Google Scholar 

  185. P. van Heijster, A. Doelman, T.J. Kaper, Y. Nishiura, and K.-I. Ueda. Pinned fronts in heterogeneous media of jump type. Nonlinearity, 24:127–157, 2011.

    MATH  MathSciNet  Google Scholar 

  186. P. van Heijster, A. Doelman, T.J. Kaper, and K. Promislow. Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst., 9(2):292–332, 2010.

    MATH  MathSciNet  Google Scholar 

  187. P. van Heijster and B. Sandstede. Planar radial spots in a three-component FitzHugh–Nagumo system. J. Nonlinear Sci., 21:705–745, 2011.

    MATH  MathSciNet  Google Scholar 

  188. W. van Saarloos. Front propagation into unstable states. Physics Reports, 386:29–222, 2003.

    MATH  Google Scholar 

  189. A.I. Volpert, V. Volpert, and V.A. Volpert. Traveling Wave Solutions of Parabolic Systems. Amer. Math. Soc., 1994.

    Google Scholar 

  190. M.A. Webber and P.C. Bressloff. The effects of noise on binocular rivalry waves: a stochastic neural field model. J. Stat. Mech., 2013:P03001, 2013.

    MathSciNet  Google Scholar 

  191. H. Wilson and J. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybern., 13(2):55–80, 1973.

    MATH  Google Scholar 

  192. L. Wang, Y. Wu, and T. Li. Exponential stability of large-amplitude traveling fronts for quasi-linear relaxation systems with diffusion. Physica D, 240(11):971–983, 2011.

    MATH  MathSciNet  Google Scholar 

  193. G. Wolansky. On the slow evolution of quasi-stationary shock waves. J. Dyn. Diff. Eq., 6(2):247–276, 1994.

    MATH  MathSciNet  Google Scholar 

  194. M. Wechselberger and G.J. Pettet. Folds, canards and shocks in advection–reaction–diffusion models. Nonlinearity, 23(8):1949–1969, 2010.

    MATH  MathSciNet  Google Scholar 

  195. M.J. Ward and L.G. Reyna. Internal layers, small eigenvalues, and the sensitivity of metastable motion. SIAM J. Appl. Math., 55(2):425–445, 1995.

    MATH  MathSciNet  Google Scholar 

  196. K. Wang and W. Wang. Propagation of HBV with spatial dependence. Math. Biosci., 210(1):78–95, 2007.

    MATH  MathSciNet  Google Scholar 

  197. Y. Wu and X. Zhao. The existence and stability of travelling waves with transition layers for some singular cross-diffusion systems. Physica D, 200(3):325–358, 2005.

    MATH  MathSciNet  Google Scholar 

  198. A.C. Yew, D.H. Terman, and G.B. Ermentrout. Propagating activity patterns in thalamic neuronal networks. SIAM J. Appl. Math., 61(5):1578–1604, 2001.

    MATH  MathSciNet  Google Scholar 

  199. J. Zhang and Y. Peng. Travelling waves of the diffusive Nicholson’s blowflies equation with strong generic delay kernel and non-local effect. Nonl. Anal.: Theor. Meth. Appl., 68(5):1263–1270, 2008.

    Google Scholar 

  200. E.C. Zachmanoglu and D.W. Thoe. Introduction to Partial Differential Equations with Applications. Dover, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuehn, C. (2015). Spatial Dynamics. In: Multiple Time Scale Dynamics. Applied Mathematical Sciences, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-12316-5_17

Download citation

Publish with us

Policies and ethics