Skip to main content

Abstract

MuSK is a receptor tyrosine kinase that plays an essential role in the formation and maintenance of neuromuscular synapses. MuSK is not a muscle-specific kinase, however, as the name implies, since MuSK is expressed in the brain, transiently in the liver, and in additional tissues. MuSK function has been largely studied at the neuromuscular synapse. Neural Agrin, supplied by motor neurons, indirectly stimulates MuSK by binding to Lrp4, a member of the low-density lipoprotein receptor family, promoting formation of an Lrp4/MuSK complex and stimulating MuSK tyrosine phosphorylation. Once tyrosine phosphorylated, MuSK stimulates a pathway for anchoring key proteins in the postsynaptic membrane and a separate pathway for transcribing “synaptic” genes in nearby nuclei. Activated MuSK is also responsible for clustering Lrp4, which functions as a muscle-derived retrograde signal for presynaptic differentiation. MuSK is a type I transmembrane protein, related to ROR kinases, with an extracellular region that is composed of three Ig-like domains and a Frizzled-like domain. One face of the first Ig-like domain has a critical role in MuSK dimerization, whereas the opposing face of this Ig-like domain is essential for association of MuSK with Lrp4. The Frizzled-like domain can bind Wnt proteins, but the role of Wnt-MuSK signaling is poorly understood. Dok-7 is recruited to tyrosine-phosphorylated MuSK and acts both as an inside-out ligand to stabilize and enhance MuSK phosphorylation and as an adapter for downstream signaling. Mutations in Agrin, Lrp4, MuSK, and Dok-7 cause congenital myasthenia, and autoantibodies to Lrp4, MuSK, and Agrin cause myasthenia gravis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

AChR:

Acetylcholine receptor

ALS:

Amyotrophic lateral sclerosis

CNS:

Central nervous system

Lrp4:

Low-density lipoprotein receptor-related protein 4

MG:

Myasthenia gravis

MuSK:

Muscle-specific kinase

References

  1. Jennings CG, Dyer SM, Burden SJ. Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proc Natl Acad Sci USA. 1993;90(7):2895–9. Epub 1993/04/01.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Valenzuela DM, Stitt TN, DiStefano PS, Rojas E, Mattsson K, Compton DL, et al. Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron. 1995;15(3):573–84. Epub 1995/09/01.

    Article  CAS  PubMed  Google Scholar 

  3. Ganju P, Walls E, Brennan J, Reith AD. Cloning and developmental expression of Nsk2, a novel receptor tyrosine kinase implicated in skeletal myogenesis. Oncogene. 1995;11(2):281–90. Epub 1995/07/20.

    CAS  PubMed  Google Scholar 

  4. DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, et al. The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell. 1996;85(4):501–12. Epub 1996/05/17.

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-Osta A, Tsokas P, Pollonini G, Landau EM, Blitzer R, Alberini CM. MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation. J Neurosci. 2006;26(30):7919–32. Epub 2006/07/28.

    Article  CAS  PubMed  Google Scholar 

  6. Ksiazek I, Burkhardt C, Lin S, Seddik R, Maj M, Bezakova G, et al. Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci. 2007;27(27):7183–95. Epub 2007/07/06.

    Article  CAS  PubMed  Google Scholar 

  7. Fu AK, Smith FD, Zhou H, Chu AH, Tsim KW, Peng BH, et al. Xenopus muscle-specific kinase: molecular cloning and prominent expression in neural tissues during early embryonic development. Eur J Neurosci. 1999;11(2):373–82. Epub 1999/03/03.

    Article  CAS  PubMed  Google Scholar 

  8. Ip FC, Glass DG, Gies DR, Cheung J, Lai KO, Fu AK, et al. Cloning and characterization of muscle-specific kinase in chicken. Mol Cell Neurosci. 2000;16(5):661–73. Epub 2000/11/21.

    Article  CAS  PubMed  Google Scholar 

  9. Stiegler AL, Burden SJ, Hubbard SR. Crystal structure of the agrin-responsive immunoglobulin-like domains 1 and 2 of the receptor tyrosine kinase MuSK. J Mol Biol. 2006;364(3):424–33. Epub 2006/10/03.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Stiegler AL, Burden SJ, Hubbard SR. Crystal structure of the frizzled-like cysteine-rich domain of the receptor tyrosine kinase MuSK. J Mol Biol. 2009;393(1):1–9. Epub 2009/08/12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Janda CY, Waghray D, Levin AM, Thomas C, Garcia KC. Structural basis of Wnt recognition by Frizzled. Science. 2012;337(6090):59–64. Epub 2012/06/02.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jing L, Lefebvre JL, Gordon LR, Granato M. Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor. Neuron. 2009;61(5):721–33. Epub 2009/03/17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gordon LR, Gribble KD, Syrett CM, Granato M. Initiation of synapse formation by Wnt-induced MuSK endocytosis. Development. 2012;139(5):1023–33. Epub 2012/02/10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zhang B, Liang C, Bates R, Yin Y, Xiong WC, Mei L. Wnt proteins regulate acetylcholine receptor clustering in muscle cells. Mol Brain. 2012;5:7. Epub 2012/02/09.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Green JL, Kuntz SG, Sternberg PW. Ror receptor tyrosine kinases: orphans no more. Trends Cell Biol. 2008;18(11):536–44. Epub 2008/10/14.

    Article  CAS  PubMed  Google Scholar 

  16. Till JH, Becerra M, Watty A, Lu Y, Ma Y, Neubert TA, et al. Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation. Structure. 2002;10(9):1187–96. Epub 2002/09/11.

    Article  CAS  PubMed  Google Scholar 

  17. Piras R, Staneloni R. In vivo regulation of rat muscle glycogen synthetase activity. Biochemistry. 1969;8(5):2153–60. Epub 1969/05/01.

    Article  CAS  PubMed  Google Scholar 

  18. Watty A, Neubauer G, Dreger M, Zimmer M, Wilm M, Burden SJ. The in vitro and in vivo phosphotyrosine map of activated MuSK. Proc Natl Acad Sci USA. 2000;97(9):4585–90. Epub 2000/04/26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Herbst R, Burden SJ. The juxtamembrane region of MuSK has a critical role in agrin-mediated signaling. EMBO J. 2000;19(1):67–77. Epub 2000/01/05.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Okada K, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T, et al. The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science. 2006;312(5781):1802–5. Epub 2006/06/24.

    Article  CAS  PubMed  Google Scholar 

  21. Bergamin E, Hallock PT, Burden SJ, Hubbard SR. The cytoplasmic adaptor protein Dok7 activates the receptor tyrosine kinase MuSK via dimerization. Mol Cell. 2010;39(1):100–9. Epub 2010/07/07.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Beeson D, Higuchi O, Palace J, Cossins J, Spearman H, Maxwell S, et al. Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science. 2006;313(5795):1975–8. Epub 2006/08/19.

    Article  CAS  PubMed  Google Scholar 

  23. Muller JS, Herczegfalvi A, Vilchez JJ, Colomer J, Bachinski LL, Mihaylova V, et al. Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes. Brain. 2007;130(Pt 6):1497–506. Epub 2007/04/19.

    Article  PubMed  Google Scholar 

  24. Selcen D, Milone M, Shen XM, Harper CM, Stans AA, Wieben ED, et al. Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients. Ann Neurol. 2008;64(1):71–87. Epub 2008/07/16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hallock PT, Xu CF, Park TJ, Neubert TA, Curran T, Burden SJ. Dok-7 regulates neuromuscular synapse formation by recruiting Crk and Crk-L. Genes Dev. 2010;24(21):2451–61. Epub 2010/11/03.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Neubig RR, Krodel EK, Boyd ND, Cohen JB. Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides. Proc Natl Acad Sci USA. 1979;76(2):690–4. Epub 1979/02/01.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Burden SJ, DePalma RL, Gottesman GS. Crosslinking of proteins in acetylcholine receptor-rich membranes: association between the beta-subunit and the 43 kd subsynaptic protein. Cell. 1983;35(3 Pt 2):687–92. Epub 1983/12/01.

    Article  CAS  PubMed  Google Scholar 

  28. Maimone MM, Merlie JP. Interaction of the 43 kd postsynaptic protein with all subunits of the muscle nicotinic acetylcholine receptor. Neuron. 1993;11(1):53–66. Epub 1993/07/01.

    Article  CAS  PubMed  Google Scholar 

  29. Lee Y, Rudell J, Ferns M. Rapsyn interacts with the muscle acetylcholine receptor via alpha-helical domains in the alpha, beta, and epsilon subunit intracellular loops. Neuroscience. 2009;163(1):222–32. Epub 2009/06/02.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC, Sanes JR, et al. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature. 1995;377(6546):232–6. Epub 1995/09/21.

    Article  CAS  PubMed  Google Scholar 

  31. Zuber B, Unwin N. Structure and superorganization of acetylcholine receptor-rapsyn complexes. Proc Natl Acad Sci USA. 2013;110(26):10622–7. Epub 2013/06/12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Borges LS, Yechikhov S, Lee YI, Rudell JB, Friese MB, Burden SJ, et al. Identification of a motif in the acetylcholine receptor beta subunit whose phosphorylation regulates rapsyn association and postsynaptic receptor localization. J Neurosci. 2008;28(45):11468–76. Epub 2008/11/07.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Brockhausen J, Cole RN, Gervasio OL, Ngo ST, Noakes PG, Phillips WD. Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse. Dev Neurobiol. 2008;68(9):1153–69. Epub 2008/05/29.

    Article  CAS  PubMed  Google Scholar 

  34. Friese MB, Blagden CS, Burden SJ. Synaptic differentiation is defective in mice lacking acetylcholine receptor beta-subunit tyrosine phosphorylation. Development. 2007;134(23):4167–76. Epub 2007/10/26.

    Article  CAS  PubMed  Google Scholar 

  35. Burden SJ. SnapShot: neuromuscular junction. Cell. 2011;144(5):826–e1. Epub 2011/03/08.

    Article  PubMed  Google Scholar 

  36. Dai Z, Luo X, Xie H, Peng HB. The actin-driven movement and formation of acetylcholine receptor clusters. J Cell Biol. 2000;150(6):1321–34. Epub 2000/09/20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Weston C, Gordon C, Teressa G, Hod E, Ren XD, Prives J. Cooperative regulation by Rac and Rho of agrin-induced acetylcholine receptor clustering in muscle cells. J Biol Chem. 2003;278(8):6450–5. Epub 2002/12/11.

    Article  CAS  PubMed  Google Scholar 

  38. Weston C, Yee B, Hod E, Prives J. Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42. J Cell Biol. 2000;150(1):205–12. Epub 2000/07/13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Linnoila J, Wang Y, Yao Y, Wang ZZ. A mammalian homolog of Drosophila tumorous imaginal discs, Tid1, mediates agrin signaling at the neuromuscular junction. Neuron. 2008;60(4):625–41. Epub 2008/11/29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Grady RM, Zhou H, Cunningham JM, Henry MD, Campbell KP, Sanes JR. Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin–glycoprotein complex. Neuron. 2000;25(2):279–93. Epub 2000/03/17.

    Article  CAS  PubMed  Google Scholar 

  41. Grady RM, Akaaboune M, Cohen AL, Maimone MM, Lichtman JW, Sanes JR. Tyrosine-phosphorylated and nonphosphorylated isoforms of alpha-dystrobrevin: roles in skeletal muscle and its neuromuscular and myotendinous junctions. J Cell Biol. 2003;160(5):741–52. Epub 2003/02/27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kishi M, Kummer TT, Eglen SJ, Sanes JR. LL5beta: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction. J Cell Biol. 2005;169(2):355–66. Epub 2005/04/27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Proszynski TJ, Gingras J, Valdez G, Krzewski K, Sanes JR. Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc Natl Acad Sci USA. 2009;106(43):18373–8. Epub 2009/10/14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Schaeffer L, Duclert N, Huchet-Dymanus M, Changeux JP. Implication of a multisubunit Ets-related transcription factor in synaptic expression of the nicotinic acetylcholine receptor. EMBO J. 1998;17(11):3078–90. Epub 1998/06/26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Jaworski A, Smith CL, Burden SJ. GA-binding protein is dispensable for neuromuscular synapse formation and synapse-specific gene expression. Mol Cell Biol. 2007;27(13):5040–6. Epub 2007/05/09.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. O’Leary DA, Noakes PG, Lavidis NA, Kola I, Hertzog PJ, Ristevski S. Targeting of the ETS factor GABPalpha disrupts neuromuscular junction synaptic function. Mol Cell Biol. 2007;27(9):3470–80. Epub 2007/02/28.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hippenmeyer S, Huber RM, Ladle DR, Murphy K, Arber S. ETS transcription factor Erm controls subsynaptic gene expression in skeletal muscles. Neuron. 2007;55(5):726–40. Epub 2007/09/06.

    Article  CAS  PubMed  Google Scholar 

  48. Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest. 2001;108(6):779–84. Epub 2001/09/19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell. 2008;135(2):334–42. Epub 2008/10/14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L. LRP4 serves as a coreceptor of agrin. Neuron. 2008;60(2):285–97. Epub 2008/10/30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Zhang W, Coldefy AS, Hubbard SR, Burden SJ. Agrin binds to the N-terminal region of Lrp4 and stimulates association between Lrp4 and the first Ig-like domain in MuSK. J Biol Chem. 2011;286:40624–30. Epub 2011/10/05.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Arber S, Burden SJ, Harris AJ. Patterning of skeletal muscle. Curr Opin Neurobiol. 2002;12(1):100–3. Epub 2002/02/28.

    Article  CAS  PubMed  Google Scholar 

  53. Gomez AM, Burden SJ. The extracellular region of Lrp4 is sufficient to mediate neuromuscular synapse formation. Dev Dyn. 2011;240(12):2626–33. Epub 2011/11/01.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Wu H, Lu Y, Shen C, Patel N, Gan L, Xiong WC, et al. Distinct roles of muscle and motoneuron LRP4 in neuromuscular junction formation. Neuron. 2012;75(1):94–107. Epub 2012/07/17.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Choi HY, Liu Y, Tennert C, Sugiura Y, Karakatsani A, Kroger S, et al. APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. eLife. 2013;2:e00220. Epub 2013/08/30.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Zong Y, Zhang B, Gu S, Lee K, Zhou J, Yao G, et al. Structural basis of agrin-LRP4-MuSK signaling. Genes Dev. 2012;26(3):247–58. Epub 2012/02/04.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Burden SJ. The formation of neuromuscular synapses. Genes Dev. 1998;12(2):133–48. Epub 1998/03/07.

    Article  CAS  PubMed  Google Scholar 

  58. Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, et al. Agrin acts via a MuSK receptor complex. Cell. 1996;85(4):513–23. Epub 1996/05/17.

    Article  CAS  PubMed  Google Scholar 

  59. Kitiyakara A, Angevine DM. A study of the pattern of postembryonic growth of M.Gracilis in Mice. Dev Biol. 1963;8:322–40. Epub 1963/12/01.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang M, McLennan IS. During secondary myotube formation, primary myotubes preferentially absorb new nuclei at their ends. Dev Dyn. 1995;204(2):168–77. Epub 1995/10/01.

    Article  CAS  PubMed  Google Scholar 

  61. Kim N, Burden SJ. MuSK controls where motor axons grow and form synapses. Nat Neurosci. 2008;11(1):19–27. Epub 2007/12/18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Yang X, Li W, Prescott ED, Burden SJ, Wang JC. DNA topoisomerase II beta and neural development. Science. 2000;287(5450):131–4. Epub 1999/12/30.

    Article  CAS  PubMed  Google Scholar 

  63. Yang X, Arber S, William C, Li L, Tanabe Y, Jessell TM, et al. Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation. Neuron. 2001;30(2):399–410. Epub 2001/06/08.

    Article  CAS  PubMed  Google Scholar 

  64. Lin W, Burgess RW, Dominguez B, Pfaff SL, Sanes JR, Lee KF. Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature. 2001;410(6832):1057–64. Epub 2001/04/27.

    Article  CAS  PubMed  Google Scholar 

  65. Misgeld T, Kummer TT, Lichtman JW, Sanes JR. Agrin promotes synaptic differentiation by counteracting an inhibitory effect of neurotransmitter. Proc Natl Acad Sci USA. 2005;102(31):11088–93. Epub 2005/07/27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Lin W, Dominguez B, Yang J, Aryal P, Brandon EP, Gage FH, et al. Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron. 2005;46(4):569–79. Epub 2005/06/10.

    Article  CAS  PubMed  Google Scholar 

  67. Kong XC, Barzaghi P, Ruegg MA. Inhibition of synapse assembly in mammalian muscle in vivo by RNA interference. EMBO Rep. 2004;5(2):183–8. Epub 2004/01/30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Hesser BA, Henschel O, Witzemann V. Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK. Mol Cell Neurosci. 2006;31(3):470–80. Epub 2005/12/13.

    Article  CAS  PubMed  Google Scholar 

  69. Barik A, Lu Y, Sathyamurthy A, Bowman A, Shen C, Li L, et al. LRP4 is critical for neuromuscular junction maintenance. J Neurosci. 2014;34(42):13892–905. Epub 2014/10/17.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Yumoto N, Kim N, Burden SJ. Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature. 2012;489:438–42. Epub 2012/08/03.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. McConville J, Vincent A. Diseases of the neuromuscular junction. Curr Opin Pharmacol. 2002;2(3):296–301. Epub 2002/05/22.

    Article  CAS  PubMed  Google Scholar 

  72. Huze C, Bauche S, Richard P, Chevessier F, Goillot E, Gaudon K, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet. 2009;85(2):155–67. Epub 2009/07/28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, Bauche S, et al. MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet. 2004;13(24):3229–40. Epub 2004/10/22.

    Article  CAS  PubMed  Google Scholar 

  74. Maselli RA, Fernandez JM, Arredondo J, Navarro C, Ngo M, Beeson D, et al. LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Hum Genet. 2012;131(7):1123–35. Epub 2011/12/30.

    Article  CAS  PubMed  Google Scholar 

  75. Engel AG, Ohno K, Sine SM. Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci. 2003;4(5):339–52. Epub 2003/05/03.

    Article  CAS  PubMed  Google Scholar 

  76. Farrugia ME, Vincent A. Autoimmune mediated neuromuscular junction defects. Curr Opin Neurol. 2010;23(5):489–95. Epub 2010/07/24.

    Article  CAS  PubMed  Google Scholar 

  77. Niks EH, van Leeuwen Y, Leite MI, Dekker FW, Wintzen AR, Wirtz PW, et al. Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. J Neuroimmunol. 2008;195(1–2):151–6. Epub 2008/04/04.

    Article  CAS  PubMed  Google Scholar 

  78. Klooster R, Plomp JJ, Huijbers MG, Niks EH, Straasheijm KR, Detmers FJ, et al. Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain. 2012;135(Pt 4):1081–101. Epub 2012/03/08.

    Article  PubMed  Google Scholar 

  79. Huijbers MG, Zhang W, Klooster R, Niks EH, Friese MB, Straasheijm KR, et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci USA. 2013;110(51):20783–8. Epub 2013/12/04.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Koneczny I, Cossins J, Waters P, Beeson D, Vincent A. MuSK myasthenia gravis IgG4 disrupts the interaction of LRP4 with MuSK but both IgG4 and IgG1-3 can disperse preformed agrin-independent AChR clusters. PLoS One. 2013;8(11):e80695. Epub 2013/11/19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol. 2011;69(2):418–22. Epub 2011/03/10.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B, Lewis RA, et al. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol. 2012;69(4):445–51. Epub 2011/12/14.

    Article  PubMed  Google Scholar 

  83. Pevzner A, Schoser B, Peters K, Cosma NC, Karakatsani A, Schalke B, et al. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol. 2012;259(3):427–35. Epub 2011/08/05.

    Article  CAS  PubMed  Google Scholar 

  84. Karner CM, Dietrich MF, Johnson EB, Kappesser N, Tennert C, Percin F, et al. Lrp4 regulates initiation of ureteric budding and is crucial for kidney formation–a mouse model for Cenani-Lenz syndrome. PLoS One. 2010;5(4):e10418. Epub 2010/05/11.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Li Y, Pawlik B, Elcioglu N, Aglan M, Kayserili H, Yigit G, et al. LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am J Hum Genet. 2010;86(5):696–706. Epub 2010/04/13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Lindy AS, Bupp CP, McGee SJ, Steed E, Stevenson RE, Basehore MJ, et al. Truncating mutations in LRP4 lead to a prenatal lethal form of Cenani-Lenz syndrome. Am J Med Genet A. 2014;164A(9):2391–7. Epub 2014/06/14.

    Article  PubMed  Google Scholar 

  87. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–76. Epub 2006/12/08.

    Article  CAS  PubMed  Google Scholar 

  88. Visel A, Thaller C, Eichele G. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res. 2004;32(Database issue):D552–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Tian QB, Suzuki T, Yamauchi T, Sakagami H, Yoshimura Y, Miyazawa S, et al. Interaction of LDL receptor-related protein 4 (LRP4) with postsynaptic scaffold proteins via its C-terminal PDZ domain-binding motif, and its regulation by Ca/calmodulin-dependent protein kinase II. Eur J Neurosci. 2006;23(11):2864–76. Epub 2006/07/06.

    Article  PubMed  Google Scholar 

  90. Weatherbee SD, Anderson KV, Niswander LA. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development. 2006;133(24):4993–5000. Epub 2006/11/23.

    Article  CAS  PubMed  Google Scholar 

  91. Gomez AM. Synaptic plasticity and cognitive function are disrupted in the absence of Lrp4. eLife. 2014;3:e04287. doi:10.7554/eLife.04287.

    Article  PubMed  Google Scholar 

  92. Valdez G, Tapia JC, Kang H, Clemenson Jr GD, Gage FH, Lichtman JW, et al. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci USA. 2010;107(33):14863–8. Epub 2010/08/04.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Valdez G, Tapia JC, Lichtman JW, Fox MA, Sanes JR. Shared resistance to aging and ALS in neuromuscular junctions of specific muscles. PLoS One. 2012;7(4):e34640. Epub 2012/04/10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Burden .

Editor information

Editors and Affiliations

Receptor at a glance: MuSK

Receptor at a glance: MuSK

Chromosome location

Mouse, chromosome 4, 31.87 cM

Gene size (bp)

Approx. 88–108 kb (depends on source)

Intron/ exon numbers

15/16

mRNA size (5′, ORF, 3′)

3422 (150 nt 5′; 2629 ORF; 593 3′)

Amino acid number

893

Kda

99.7

Posttranslational modifications

N-linked glycosylation

Domains

Ig-like domain, Frizzled-like domain, protein kinase domain

Ligands

Lrp4, Wnts (Wnt11, 4, 9a)

Known dimerizing partners

Lrp4, Dok-7, MuSK

Pathways activated

 

Tissues expressed

Skeletal muscle, brain

Human diseases

Congenital myasthenia, myasthenia gravis

Knockout mouse phenotype

Failure to form neuromuscular synapses

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burden, S.J., Hubbard, S.R., Zhang, W., Yumoto, N. (2015). The MuSK Receptor Family. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Family and Subfamilies. Springer, Cham. https://doi.org/10.1007/978-3-319-11888-8_9

Download citation

Publish with us

Policies and ethics