Skip to main content

The Eph Receptor Family

  • Chapter

Abstract

Eph receptors constitute the largest subfamily of receptor tyrosine kinases and mediate contact-dependent cell–cell communication in many tissues. Unique features of Eph receptors include their engagement with membrane-attached ephrin ligands, the requirement of higher-order clustering for full activation, and bidirectional signaling into the receptor- as well as ligand-expressing cell. Eph receptor functions can be additionally modulated by cis interactions with ephrins expressed on the same cell as well as proteolytic cleavage. Extensive studies in several model organisms have implicated Eph receptors in multiple physiological and pathological processes at all stages from early embryogenesis to aging. Eph signaling is often repulsive and governs cell sorting, migration, and boundary formation. During embryonic and early postnatal period, Ephs are involved in the development of the nervous system, cardiovascular system, and several other organs and tissues. Eph receptors also have various functions in adult physiology, including their important role in neural plasticity. Finally, Ephs have emerged as important players in different types of cancer and several neurological diseases and are regarded as potential drug targets for these disorders.

In this chapter, we describe the common features and functions of Eph receptors and provide specific information on the individual family members.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    UniProt (http://www.uniprot.org).

  2. 2.

    Phosphosite (http://www.phosphosite.org).

References

  1. Egea J, Klein R. Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol. 2007;17(5):230–8.

    CAS  PubMed  Google Scholar 

  2. Labrador JP, Brambilla R, Klein R. The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. EMBO J. 1997;16(13):3889–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Bowden TA, Aricescu AR, Nettleship JE, Siebold C, Rahman-Huq N, Owens RJ, et al. Structural plasticity of eph receptor A4 facilitates cross-class ephrin signaling. Structure. 2009;17(10):1386–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB. Crystal structure of an Eph receptor-ephrin complex. Nature. 2001;414(6866):933–8.

    CAS  PubMed  Google Scholar 

  5. Himanen JP, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD, et al. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci. 2004;7(5):501–9.

    CAS  PubMed  Google Scholar 

  6. Flanagan JG, Vanderhaeghen P. The ephrins and Eph receptors in neural development. Annu Rev Neurosci. 1998;21:309–45.

    CAS  PubMed  Google Scholar 

  7. Wilkinson DG. Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci. 2001;2(3):155–64.

    CAS  PubMed  Google Scholar 

  8. Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 2002;3(7):475–86.

    CAS  PubMed  Google Scholar 

  9. Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C, et al. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 1999;13(23):3125–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Davy A, Robbins SM. Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner. EMBO J. 2000;19(20):5396–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Holen HL, Shadidi M, Narvhus K, Kjosnes O, Tierens A, Aasheim HC. Signaling through ephrin-A ligand leads to activation of Src-family kinases, Akt phosphorylation, and inhibition of antigen receptor-induced apoptosis. J Leukoc Biol. 2008;84(4):1183–91.

    CAS  PubMed  Google Scholar 

  12. Lim YS, McLaughlin T, Sung TC, Santiago A, Lee KF, O'Leary DD. p75(NTR) mediates ephrin-A reverse signaling required for axon repulsion and mapping. Neuron. 2008;59(5):746–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Marler KJ, Becker-Barroso E, Martinez A, Llovera M, Wentzel C, Poopalasundaram S, et al. A TrkB/EphrinA interaction controls retinal axon branching and synaptogenesis. J Neurosci. 2008;28(48):12700–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bonanomi D, Chivatakarn O, Bai G, Abdesselem H, Lettieri K, Marquardt T, et al. Ret is a multifunctional coreceptor that integrates diffusible- and contact-axon guidance signals. Cell. 2012;148(3):568–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Smith FM, Vearing C, Lackmann M, Treutlein H, Himanen J, Chen K, et al. Dissecting the EphA3/Ephrin-A5 interactions using a novel functional mutagenesis screen. J Biol Chem. 2004;279(10):9522–31.

    CAS  PubMed  Google Scholar 

  16. Vearing CJ, Lackmann M. Eph receptor signalling; dimerisation just isn’t enough. Growth Factors. 2005;23(1):67–76.

    CAS  PubMed  Google Scholar 

  17. Schaupp A, Sabet O, Dudanova I, Ponserre M, Bastiaens P, Klein R. The composition of EphB2 clusters determines the strength in the cellular repulsion response. J Cell Biol. 2014;204(3):409–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Hornberger MR, Dutting D, Ciossek T, Yamada T, Handwerker C, Lang S, et al. Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron. 1999;22(4):731–42.

    CAS  PubMed  Google Scholar 

  19. Carvalho RF, Beutler M, Marler KJ, Knoll B, Becker-Barroso E, Heintzmann R, et al. Silencing of EphA3 through a cis interaction with ephrinA5. Nat Neurosci. 2006;9(3):322–30.

    CAS  PubMed  Google Scholar 

  20. Flanagan JG. Neural map specification by gradients. Curr Opin Neurobiol. 2006;16(1):59–66.

    CAS  PubMed  Google Scholar 

  21. Lin KT, Sloniowski S, Ethell DW, Ethell IM. Ephrin-B2-induced cleavage of EphB2 receptor is mediated by matrix metalloproteinases to trigger cell repulsion. J Biol Chem. 2008;283(43):28969–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Inoue E, Deguchi-Tawarada M, Togawa A, Matsui C, Arita K, Katahira-Tayama S, et al. Synaptic activity prompts gamma-secretase-mediated cleavage of EphA4 and dendritic spine formation. J Cell Biol. 2009;185(3):551–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Attwood BK, Bourgognon JM, Patel S, Mucha M, Schiavon E, Skrzypiec AE, et al. Neuropsin cleaves EphB2 in the amygdala to control anxiety. Nature. 2011;473(7347):372–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Sugiyama N, Gucciardo E, Tatti O, Varjosalo M, Hyytiainen M, Gstaiger M, et al. EphA2 cleavage by MT1-MMP triggers single cancer cell invasion via homotypic cell repulsion. J Cell Biol. 2013;201(3):467–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Gatto G, Morales D, Kania A, Klein R. EphA4 receptor shedding regulates spinal motor axon guidance. Curr Biol. 2014;24:2355–65.

    CAS  PubMed  Google Scholar 

  26. Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002;111(2):251–63.

    CAS  PubMed  Google Scholar 

  27. Compagni A, Logan M, Klein R, Adams RH. Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell. 2003;5(2):217–30.

    CAS  PubMed  Google Scholar 

  28. Davy A, Aubin J, Soriano P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 2004;18(5):572–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Jorgensen C, Sherman A, Chen GI, Pasculescu A, Poliakov A, Hsiung M, et al. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science. 2009;326(5959):1502–9.

    CAS  PubMed  Google Scholar 

  30. Passante L, Gaspard N, Degraeve M, Frisen J, Kullander K, De Maertelaer V, et al. Temporal regulation of ephrin/Eph signalling is required for the spatial patterning of the mammalian striatum. Development. 2008;135(19):3281–90.

    CAS  PubMed  Google Scholar 

  31. Xu Q, Mellitzer G, Robinson V, Wilkinson DG. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature. 1999;399(6733):267–71.

    CAS  PubMed  Google Scholar 

  32. Park EC, Cho GS, Kim GH, Choi SC, Han JK. The involvement of Eph-Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements. Dev Biol. 2011;350(2):441–50.

    CAS  PubMed  Google Scholar 

  33. Kida YS, Sato T, Miyasaka KY, Suto A, Ogura T. Daam1 regulates the endocytosis of EphB during the convergent extension of the zebrafish notochord. Proc Natl Acad Sci USA. 2007;104(16):6708–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Rohani N, Canty L, Luu O, Fagotto F, Winklbauer R. EphrinB/EphB signaling controls embryonic germ layer separation by contact-induced cell detachment. PLoS Biol. 2011;9(3):e1000597.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Fagotto F, Rohani N, Touret AS, Li R. A molecular base for cell sorting at embryonic boundaries: contact inhibition of cadherin adhesion by ephrin/ Eph-dependent contractility. Dev Cell. 2013;27(1):72–87.

    CAS  PubMed  Google Scholar 

  36. Barrios A, Poole RJ, Durbin L, Brennan C, Holder N, Wilson SW. Eph/Ephrin signaling regulates the mesenchymal-to-epithelial transition of the paraxial mesoderm during somite morphogenesis. Curr Biol. 2003;13(18):1571–82.

    CAS  PubMed  Google Scholar 

  37. Durbin L, Brennan C, Shiomi K, Cooke J, Barrios A, Shanmugalingam S, et al. Eph signaling is required for segmentation and differentiation of the somites. Genes Dev. 1998;12(19):3096–109.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Schmidt C, Christ B, Maden M, Brand-Saberi B, Patel K. Regulation of Epha4 expression in paraxial and lateral plate mesoderm by ectoderm-derived signals. Dev Dyn. 2001;220(4):377–86.

    CAS  PubMed  Google Scholar 

  39. Watanabe T, Sato Y, Saito D, Tadokoro R, Takahashi Y. EphrinB2 coordinates the formation of a morphological boundary and cell epithelialization during somite segmentation. Proc Natl Acad Sci USA. 2009;106(18):7467–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Julich D, Mould AP, Koper E, Holley SA. Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling. Development. 2009;136(17):2913–21.

    CAS  PubMed  Google Scholar 

  41. Holmberg J, Clarke DL, Frisen J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature. 2000;408(6809):203–6.

    CAS  PubMed  Google Scholar 

  42. Becker N, Seitanidou T, Murphy P, Mattei MG, Topilko P, Nieto MA, et al. Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain. Mech Dev. 1994;47(1):3–17.

    CAS  PubMed  Google Scholar 

  43. Nieto MA, Gilardi-Hebenstreit P, Charnay P, Wilkinson DG. A receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm. Development. 1992;116(4):1137–50.

    CAS  PubMed  Google Scholar 

  44. Flenniken AM, Gale NW, Yancopoulos GD, Wilkinson DG. Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev Biol. 1996;179(2):382–401.

    CAS  PubMed  Google Scholar 

  45. Gale NW, Flenniken A, Compton DC, Jenkins N, Copeland NG, Gilbert DJ, et al. Elk-L3, a novel transmembrane ligand for the Eph family of receptor tyrosine kinases, expressed in embryonic floor plate, roof plate and hindbrain segments. Oncogene. 1996;13(6):1343–52.

    CAS  PubMed  Google Scholar 

  46. Xu Q, Alldus G, Holder N, Wilkinson DG. Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development. 1995;121(12):4005–16.

    CAS  PubMed  Google Scholar 

  47. Cooke JE, Kemp HA, Moens CB. EphA4 is required for cell adhesion and rhombomere-boundary formation in the zebrafish. Curr Biol. 2005;15(6):536–42.

    CAS  PubMed  Google Scholar 

  48. Xu Q, Alldus G, Macdonald R, Wilkinson DG, Holder N. Function of the Eph-related kinase rtk1 in patterning of the zebrafish forebrain. Nature. 1996;381(6580):319–22.

    CAS  PubMed  Google Scholar 

  49. Smith A, Robinson V, Patel K, Wilkinson DG. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr Biol. 1997;7(8):561–70.

    CAS  PubMed  Google Scholar 

  50. Krull CE, Lansford R, Gale NW, Collazo A, Marcelle C, Yancopoulos GD, et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol. 1997;7(8):571–80.

    CAS  PubMed  Google Scholar 

  51. Wang HU, Anderson DJ. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron. 1997;18(3):383–96.

    CAS  PubMed  Google Scholar 

  52. Depaepe V, Suarez-Gonzalez N, Dufour A, Passante L, Gorski JA, Jones KR, et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature. 2005;435(7046):1244–50.

    CAS  PubMed  Google Scholar 

  53. North HA, Zhao X, Kolk SM, Clifford MA, Ziskind DM, Donoghue MJ. Promotion of proliferation in the developing cerebral cortex by EphA4 forward signaling. Development. 2009;136(14):2467–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Villar-Cervino V, Molano-Mazon M, Catchpole T, Valdeolmillos M, Henkemeyer M, Martinez LM, et al. Contact repulsion controls the dispersion and final distribution of Cajal-Retzius cells. Neuron. 2013;77(3):457–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Bouche E, Romero-Ortega MI, Henkemeyer M, Catchpole T, Leemhuis J, Frotscher M, et al. Reelin induces EphB activation. Cell Res. 2013;23(4):473–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Senturk A, Pfennig S, Weiss A, Burk K, Acker-Palmer A. Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration. Nature. 2011;472(7343):356–60.

    PubMed  Google Scholar 

  57. Torii M, Hashimoto-Torii K, Levitt P, Rakic P. Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling. Nature. 2009;461(7263):524–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Dimidschstein J, Passante L, Dufour A, van den Ameele J, Tiberi L, Hrechdakian T, et al. Ephrin-B1 controls the columnar distribution of cortical pyramidal neurons by restricting their tangential migration. Neuron. 2013;79(6):1123–35.

    CAS  PubMed  Google Scholar 

  59. Vanderhaeghen P, Lu Q, Prakash N, Frisen J, Walsh CA, Frostig RD, et al. A mapping label required for normal scale of body representation in the cortex. Nat Neurosci. 2000;3(4):358–65.

    CAS  PubMed  Google Scholar 

  60. Uziel D, Muhlfriedel S, Zarbalis K, Wurst W, Levitt P, Bolz J. Miswiring of limbic thalamocortical projections in the absence of ephrin-A5. J Neurosci. 2002;22(21):9352–7.

    CAS  PubMed  Google Scholar 

  61. Dufour A, Seibt J, Passante L, Depaepe V, Ciossek T, Frisen J, et al. Area specificity and topography of thalamocortical projections are controlled by ephrin/Eph genes. Neuron. 2003;39(3):453–65.

    CAS  PubMed  Google Scholar 

  62. Prakash N, Vanderhaeghen P, Cohen-Cory S, Frisen J, Flanagan JG, Frostig RD. Malformation of the functional organization of somatosensory cortex in adult ephrin-A5 knock-out mice revealed by in vivo functional imaging. J Neurosci. 2000;20(15):5841–7.

    CAS  PubMed  Google Scholar 

  63. Egea J, Nissen UV, Dufour A, Sahin M, Greer P, Kullander K, et al. Regulation of EphA 4 kinase activity is required for a subset of axon guidance decisions suggesting a key role for receptor clustering in Eph function. Neuron. 2005;47(4):515–28.

    CAS  PubMed  Google Scholar 

  64. Dufour A, Egea J, Kullander K, Klein R, Vanderhaeghen P. Genetic analysis of EphA-dependent signaling mechanisms controlling topographic mapping in vivo. Development. 2006;133(22):4415–20.

    CAS  PubMed  Google Scholar 

  65. Torii M, Levitt P. Dissociation of corticothalamic and thalamocortical axon targeting by an EphA7-mediated mechanism. Neuron. 2005;48(4):563–75.

    CAS  PubMed  Google Scholar 

  66. Robichaux MA, Chenaux G, Ho HY, Soskis MJ, Dravis C, Kwan KY, et al. EphB receptor forward signaling regulates area-specific reciprocal thalamic and cortical axon pathfinding. Proc Natl Acad Sci USA. 2014;111(6):2188–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Gao PP, Zhang JH, Yokoyama M, Racey B, Dreyfus CF, Black IB, et al. Regulation of topographic projection in the brain: Elf-1 in the hippocamposeptal system. Proc Natl Acad Sci USA. 1996;93(20):11161–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Zhang JH, Cerretti DP, Yu T, Flanagan JG, Zhou R. Detection of ligands in regions anatomically connected to neurons expressing the Eph receptor Bsk: potential roles in neuron-target interaction. J Neurosci. 1996;16(22):7182–92.

    CAS  PubMed  Google Scholar 

  69. Yue Y, Chen ZY, Gale NW, Blair-Flynn J, Hu TJ, Yue X, et al. Mistargeting hippocampal axons by expression of a truncated Eph receptor. Proc Natl Acad Sci USA. 2002;99(16):10777–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Kullander K, Mather NK, Diella F, Dottori M, Boyd AW, Klein R. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron. 2001;29(1):73–84.

    CAS  PubMed  Google Scholar 

  71. Henkemeyer M, Orioli D, Henderson JT, Saxton TM, Roder J, Pawson T, et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell. 1996;86(1):35–46.

    CAS  PubMed  Google Scholar 

  72. Ho SK, Kovacevic N, Henkelman RM, Boyd A, Pawson T, Henderson JT. EphB2 and EphA4 receptors regulate formation of the principal inter-hemispheric tracts of the mammalian forebrain. Neuroscience. 2009;160(4):784–95.

    CAS  PubMed  Google Scholar 

  73. Orioli D, Henkemeyer M, Lemke G, Klein R, Pawson T. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J. 1996;15(22):6035–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Mendes SW, Henkemeyer M, Liebl DJ. Multiple Eph receptors and B-class ephrins regulate midline crossing of corpus callosum fibers in the developing mouse forebrain. J Neurosci. 2006;26(3):882–92.

    CAS  PubMed  Google Scholar 

  75. Hu Z, Yue X, Shi G, Yue Y, Crockett DP, Blair-Flynn J, et al. Corpus callosum deficiency in transgenic mice expressing a truncated ephrin-A receptor. J Neurosci. 2003;23(34):10963–70.

    CAS  PubMed  Google Scholar 

  76. Nishikimi M, Oishi K, Tabata H, Torii K, Nakajima K. Segregation and pathfinding of callosal axons through EphA3 signaling. J Neurosci. 2011;31(45):16251–60.

    CAS  PubMed  Google Scholar 

  77. Park S, Frisen J, Barbacid M. Aberrant axonal projections in mice lacking EphA8 (Eek) tyrosine protein kinase receptors. EMBO J. 1997;16(11):3106–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Dottori M, Hartley L, Galea M, Paxinos G, Polizzotto M, Kilpatrick T, et al. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci USA. 1998;95(22):13248–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Canty AJ, Greferath U, Turnley AM, Murphy M. Eph tyrosine kinase receptor EphA4 is required for the topographic mapping of the corticospinal tract. Proc Natl Acad Sci USA. 2006;103(42):15629–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Paixao S, Balijepalli A, Serradj N, Niu J, Luo W, Martin JH, et al. EphrinB3/EphA4-mediated guidance of ascending and descending spinal tracts. Neuron. 2013;80(6):1407–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Kullander K, Croll SD, Zimmer M, Pan L, McClain J, Hughes V, et al. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev. 2001;15(7):877–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Kullander K, Butt SJ, Lebret JM, Lundfald L, Restrepo CE, Rydstrom A, et al. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science. 2003;299(5614):1889–92.

    CAS  PubMed  Google Scholar 

  83. Butt SJ, Lundfald L, Kiehn O. EphA4 defines a class of excitatory locomotor-related interneurons. Proc Natl Acad Sci USA. 2005;102(39):14098–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Restrepo CE, Margaryan G, Borgius L, Lundfald L, Sargsyan D, Kiehn O. Change in the balance of excitatory and inhibitory midline fiber crossing as an explanation for the hopping phenotype in EphA4 knockout mice. Eur J Neurosci. 2011;34(7):1102–12.

    PubMed  Google Scholar 

  85. Iwasato T, Katoh H, Nishimaru H, Ishikawa Y, Inoue H, Saito YM, et al. Rac-GAP alpha-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling. Cell. 2007;130(4):742–53.

    CAS  PubMed  Google Scholar 

  86. Wegmeyer H, Egea J, Rabe N, Gezelius H, Filosa A, Enjin A, et al. EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin. Neuron. 2007;55(5):756–67.

    CAS  PubMed  Google Scholar 

  87. Beg AA, Sommer JE, Martin JH, Scheiffele P. Alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits. Neuron. 2007;55(5):768–78.

    CAS  PubMed  Google Scholar 

  88. Shi L, Fu WY, Hung KW, Porchetta C, Hall C, Fu AK, et al. Alpha2-chimaerin interacts with EphA4 and regulates EphA4-dependent growth cone collapse. Proc Natl Acad Sci USA. 2007;104(41):16347–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Fawcett JP, Georgiou J, Ruston J, Bladt F, Sherman A, Warner N, et al. Nck adaptor proteins control the organization of neuronal circuits important for walking. Proc Natl Acad Sci USA. 2007;104(52):20973–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Iwamasa H, Ohta K, Yamada T, Ushijima K, Terasaki H, Tanaka H. Expression of Eph receptor tyrosine kinases and their ligands in chick embryonic motor neurons and hindlimb muscles. Dev Growth Differ. 1999;41(6):685–98.

    CAS  PubMed  Google Scholar 

  91. Eberhart J, Swartz M, Koblar SA, Pasquale EB, Tanaka H, Krull CE. Expression of EphA4, ephrin-A2 and ephrin-A5 during axon outgrowth to the hindlimb indicates potential roles in pathfinding. Dev Neurosci. 2000;22(3):237–50.

    CAS  PubMed  Google Scholar 

  92. Helmbacher F, Schneider-Maunoury S, Topilko P, Tiret L, Charnay P. Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development. 2000;127(15):3313–24.

    CAS  PubMed  Google Scholar 

  93. Kania A, Jessell TM. Topographic motor projections in the limb imposed by LIM homeodomain protein regulation of ephrin-A:EphA interactions. Neuron. 2003;38(4):581–96.

    CAS  PubMed  Google Scholar 

  94. Luria V, Krawchuk D, Jessell TM, Laufer E, Kania A. Specification of motor axon trajectory by ephrin-B:EphB signaling: symmetrical control of axonal patterning in the developing limb. Neuron. 2008;60(6):1039–53.

    CAS  PubMed  Google Scholar 

  95. Kao TJ, Palmesino E, Kania A. SRC family kinases are required for limb trajectory selection by spinal motor axons. J Neurosci. 2009;29(17):5690–700.

    CAS  PubMed  Google Scholar 

  96. Marquardt T, Shirasaki R, Ghosh S, Andrews SE, Carter N, Hunter T, et al. Coexpressed EphA receptors and ephrin-A ligands mediate opposing actions on growth cone navigation from distinct membrane domains. Cell. 2005;121(1):127–39.

    CAS  PubMed  Google Scholar 

  97. Kao TJ, Kania A. Ephrin-mediated cis-attenuation of Eph receptor signaling is essential for spinal motor axon guidance. Neuron. 2011;71(1):76–91.

    CAS  PubMed  Google Scholar 

  98. Dudanova I et al. Genetic evidence for a contribution of EphA:ephrinA reverse signaling to motor axon guidance. J Neurosci. 2012;32:5209–15.

    CAS  PubMed  Google Scholar 

  99. Feng G, Laskowski MB, Feldheim DA, Wang H, Lewis R, Frisen J, et al. Roles for ephrins in positionally selective synaptogenesis between motor neurons and muscle fibers. Neuron. 2000;25(2):295–306.

    CAS  PubMed  Google Scholar 

  100. Gallarda BW, Bonanomi D, Muller D, Brown A, Alaynick WA, Andrews SE, et al. Segregation of axial motor and sensory pathways via heterotypic trans-axonal signaling. Science. 2008;320(5873):233–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Wang L, Klein R, Zheng B, Marquardt T. Anatomical coupling of sensory and motor nerve trajectory via axon tracking. Neuron. 2011;71(2):263–77.

    CAS  PubMed  Google Scholar 

  102. Brown A, Yates PA, Burrola P, Ortuno D, Vaidya A, Jessell TM, et al. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell. 2000;102(1):77–88.

    CAS  PubMed  Google Scholar 

  103. Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisen J, Lu Q, Barbacid M, et al. Topographic guidance labels in a sensory projection to the forebrain. Neuron. 1998;21(6):1303–13.

    CAS  PubMed  Google Scholar 

  104. Feldheim DA, Kim YI, Bergemann AD, Frisen J, Barbacid M, Flanagan JG. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron. 2000;25(3):563–74.

    CAS  PubMed  Google Scholar 

  105. Cheng HJ, Nakamoto M, Bergemann AD, Flanagan JG. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell. 1995;82(3):371–81.

    CAS  PubMed  Google Scholar 

  106. Monschau B, Kremoser C, Ohta K, Tanaka H, Kaneko T, Yamada T, et al. Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. EMBO J. 1997;16(6):1258–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Connor RJ, Menzel P, Pasquale EB. Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. Dev Biol. 1998;193(1):21–35.

    CAS  PubMed  Google Scholar 

  108. Drescher U, Kremoser C, Handwerker C, Loschinger J, Noda M, Bonhoeffer F. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell. 1995;82(3):359–70.

    CAS  PubMed  Google Scholar 

  109. Frisen J, Yates PA, McLaughlin T, Friedman GC, O'Leary DD, Barbacid M. Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron. 1998;20(2):235–43.

    CAS  PubMed  Google Scholar 

  110. Walter J, Henke-Fahle S, Bonhoeffer F. Avoidance of posterior tectal membranes by temporal retinal axons. Development. 1987;101(4):909–13.

    CAS  PubMed  Google Scholar 

  111. Nakamoto M, Cheng HJ, Friedman GC, McLaughlin T, Hansen MJ, Yoon CH, et al. Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell. 1996;86(5):755–66.

    CAS  PubMed  Google Scholar 

  112. Pfeiffenberger C, Yamada J, Feldheim DA. Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. J Neurosci. 2006;26(50):12873–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Feldheim DA, Nakamoto M, Osterfield M, Gale NW, DeChiara TM, Rohatgi R, et al. Loss-of-function analysis of EphA receptors in retinotectal mapping. J Neurosci. 2004;24(10):2542–50.

    CAS  PubMed  Google Scholar 

  114. Carreres MI, Escalante A, Murillo B, Chauvin G, Gaspar P, Vegar C, et al. Transcription factor Foxd1 is required for the specification of the temporal retina in mammals. J Neurosci. 2011;31(15):5673–81.

    CAS  PubMed  Google Scholar 

  115. Nie D, Di Nardo A, Han JM, Baharanyi H, Kramvis I, Huynh T, et al. Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci. 2010;13(2):163–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Reber M, Burrola P, Lemke G. A relative signalling model for the formation of a topographic neural map. Nature. 2004;431(7010):847–53.

    CAS  PubMed  Google Scholar 

  117. Bevins N, Lemke G, Reber M. Genetic dissection of EphA receptor signaling dynamics during retinotopic mapping. J Neurosci. 2011;31(28):10302–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Marcus RC, Gale NW, Morrison ME, Mason CA, Yancopoulos GD. Eph family receptors and their ligands distribute in opposing gradients in the developing mouse retina. Dev Biol. 1996;180(2):786–9.

    CAS  PubMed  Google Scholar 

  119. Holash JA, Soans C, Chong LD, Shao H, Dixit VM, Pasquale EB. Reciprocal expression of the Eph receptor Cek5 and its ligand(s) in the early retina. Dev Biol. 1997;182(2):256–69.

    CAS  PubMed  Google Scholar 

  120. Rashid T, Upton AL, Blentic A, Ciossek T, Knoll B, Thompson ID, et al. Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system. Neuron. 2005;47(1):57–69.

    CAS  PubMed  Google Scholar 

  121. Suetterlin P, Drescher U. Target-independent ephrinA/EphA-mediated axon-axon repulsion as a novel element in retinocollicular mapping. Neuron. 2014;84:740–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Yoo S, Kim Y, Noh H, Lee H, Park E, Park S. Endocytosis of EphA receptors is essential for the proper development of the retinocollicular topographic map. EMBO J. 2011;30(8):1593–607.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Hindges R, McLaughlin T, Genoud N, Henkemeyer M, O'Leary DD. EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron. 2002;35(3):475–87.

    CAS  PubMed  Google Scholar 

  124. Braisted JE, McLaughlin T, Wang HU, Friedman GC, Anderson DJ, O’Leary DD. Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system. Dev Biol. 1997;191(1):14–28.

    CAS  PubMed  Google Scholar 

  125. Birgbauer E, Cowan CA, Sretavan DW, Henkemeyer M. Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina. Development. 2000;127(6):1231–41.

    CAS  PubMed  Google Scholar 

  126. Mann F, Ray S, Harris W, Holt C. Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron. 2002;35(3):461–73.

    CAS  PubMed  Google Scholar 

  127. Thakar S, Chenaux G, Henkemeyer M. Critical roles for EphB and ephrin-B bidirectional signalling in retinocollicular mapping. Nat Commun. 2011;2:431.

    PubMed Central  PubMed  Google Scholar 

  128. McLaughlin T, Hindges R, Yates PA, O'Leary DD. Bifunctional action of ephrin-B1 as a repellent and attractant to control bidirectional branch extension in dorsal-ventral retinotopic mapping. Development. 2003;130(11):2407–18.

    CAS  PubMed  Google Scholar 

  129. Lambot MA, Depasse F, Noel JC, Vanderhaeghen P. Mapping labels in the human developing visual system and the evolution of binocular vision. J Neurosci. 2005;25(31):7232–7.

    CAS  PubMed  Google Scholar 

  130. Williams SE, Mann F, Erskine L, Sakurai T, Wei S, Rossi DJ, et al. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron. 2003;39(6):919–35.

    CAS  PubMed  Google Scholar 

  131. Nakagawa S, Brennan C, Johnson KG, Shewan D, Harris WA, Holt CE. Ephrin-B regulates the Ipsilateral routing of retinal axons at the optic chiasm. Neuron. 2000;25(3):599–610.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Pak W, Hindges R, Lim YS, Pfaff SL, O’Leary DD. Magnitude of binocular vision controlled by islet-2 repression of a genetic program that specifies laterality of retinal axon pathfinding. Cell. 2004;119(4):567–78.

    CAS  PubMed  Google Scholar 

  133. Herrera E, Marcus R, Li S, Williams SE, Erskine L, Lai E, et al. Foxd1 is required for proper formation of the optic chiasm. Development. 2004;131(22):5727–39.

    CAS  PubMed  Google Scholar 

  134. Cowan CW, Shao YR, Sahin M, Shamah SM, Lin MZ, Greer PL, et al. Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron. 2005;46(2):205–17.

    CAS  PubMed  Google Scholar 

  135. Cowan CA, Yokoyama N, Bianchi LM, Henkemeyer M, Fritzsch B. EphB2 guides axons at the midline and is necessary for normal vestibular function. Neuron. 2000;26(2):417–30.

    CAS  PubMed  Google Scholar 

  136. Coate TM, Raft S, Zhao X, Ryan AK, Crenshaw 3rd EB, Kelley MW. Otic mesenchyme cells regulate spiral ganglion axon fasciculation through a Pou3f4/EphA4 signaling pathway. Neuron. 2012;73(1):49–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Defourny J, Poirrier AL, Lallemend F, Mateo Sanchez S, Neef J, Vanderhaeghen P, et al. Ephrin-A5/EphA4 signalling controls specific afferent targeting to cochlear hair cells. Nat Commun. 2013;4:1438.

    PubMed  Google Scholar 

  138. Cutforth T, Moring L, Mendelsohn M, Nemes A, Shah NM, Kim MM, et al. Axonal ephrin-As and odorant receptors: coordinate determination of the olfactory sensory map. Cell. 2003;114(3):311–22.

    CAS  PubMed  Google Scholar 

  139. Knoll B, Zarbalis K, Wurst W, Drescher U. A role for the EphA family in the topographic targeting of vomeronasal axons. Development. 2001;128(6):895–906.

    CAS  PubMed  Google Scholar 

  140. Serizawa S, Miyamichi K, Takeuchi H, Yamagishi Y, Suzuki M, Sakano H. A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell. 2006;127(5):1057–69.

    CAS  PubMed  Google Scholar 

  141. Gerety SS, Wang HU, Chen ZF, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell. 1999;4(3):403–14.

    CAS  PubMed  Google Scholar 

  142. Pitulescu ME, Adams RH. Eph/ephrin molecules—a hub for signaling and endocytosis. Genes Dev. 2010;24(22):2480–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93(5):741–53.

    CAS  PubMed  Google Scholar 

  144. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 1999;13(3):295–306.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Salvucci O, de la Luz SM, Martina JA, McCormick PJ, Tosato G. EphB2 and EphB4 receptors forward signaling promotes SDF-1-induced endothelial cell chemotaxis and branching remodeling. Blood. 2006;108(9):2914–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Herbert SP, Huisken J, Kim TN, Feldman ME, Houseman BT, Wang RA, et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science. 2009;326(5950):294–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 2007;8(6):464–78.

    CAS  PubMed  Google Scholar 

  148. Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 2005;19(3):397–410.

    PubMed Central  PubMed  Google Scholar 

  149. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature. 2010;465(7297):487–91.

    CAS  PubMed  Google Scholar 

  150. Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature. 2010;465(7297):483–6.

    CAS  PubMed  Google Scholar 

  151. Okazaki T, Ni A, Baluk P, Ayeni OA, Kearley J, Coyle AJ, et al. Capillary defects and exaggerated inflammatory response in the airways of EphA2-deficient mice. Am J Pathol. 2009;174(6):2388–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Stephen LJ, Fawkes AL, Verhoeve A, Lemke G, Brown A. A critical role for the EphA3 receptor tyrosine kinase in heart development. Dev Biol. 2007;302(1):66–79.

    CAS  PubMed  Google Scholar 

  153. Goldshmit Y, Galea MP, Bartlett PF, Turnley AM. EphA4 regulates central nervous system vascular formation. J Comp Neurol. 2006;497(6):864–75.

    CAS  PubMed  Google Scholar 

  154. Twigg SR, Kan R, Babbs C, Bochukova EG, Robertson SP, Wall SA, et al. Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci USA. 2004;101(23):8652–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Halford MM, Armes J, Buchert M, Meskenaite V, Grail D, Hibbs ML, et al. Ryk-deficient mice exhibit craniofacial defects associated with perturbed Eph receptor crosstalk. Nat Genet. 2000;25(4):414–8.

    CAS  PubMed  Google Scholar 

  156. Trivier E, Ganesan TS. RYK, a catalytically inactive receptor tyrosine kinase, associates with EphB2 and EphB3 but does not interact with AF-6. J Biol Chem. 2002;277(25):23037–43.

    CAS  PubMed  Google Scholar 

  157. Dravis C, Henkemeyer M. Ephrin-B reverse signaling controls septation events at the embryonic midline through separate tyrosine phosphorylation-independent signaling avenues. Dev Biol. 2011;355(1):138–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Dravis C, Yokoyama N, Chumley MJ, Cowan CA, Silvany RE, Shay J, et al. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev Biol. 2004;271(2):272–90.

    CAS  PubMed  Google Scholar 

  159. Villasenor A, Chong DC, Henkemeyer M, Cleaver O. Epithelial dynamics of pancreatic branching morphogenesis. Development. 2010;137(24):4295–305.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Muñoz JJ, Alfaro D, García-Ceca J, Alonso-C LM, Jiménez E, Zapata A. Thymic alterations in EphA4-deficient mice. J Immunol. 2006;177(2):804–13.

    PubMed  Google Scholar 

  161. Andersson L, Westerlund J, Liang S, Carlsson T, Amendola E, Fagman H, et al. Role of EphA4 receptor signaling in thyroid development: regulation of folliculogenesis and propagation of the C-cell lineage. Endocrinology. 2011;152(3):1154–64.

    CAS  PubMed  Google Scholar 

  162. Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell. 2000;103(6):945–56.

    CAS  PubMed  Google Scholar 

  163. Nolt MJ, Lin Y, Hruska M, Murphy J, Sheffler-Colins SI, Kayser MS, et al. EphB controls NMDA receptor function and synaptic targeting in a subunit-specific manner. J Neurosci. 2011;31(14):5353–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Takasu MA, Dalva MB, Zigmond RE, Greenberg ME. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science. 2002;295(5554):491–5.

    CAS  PubMed  Google Scholar 

  165. Kayser MS, McClelland AC, Hughes EG, Dalva MB. Intracellular and trans-synaptic regulation of glutamatergic synaptogenesis by EphB receptors. J Neurosci. 2006;26(47):12152–64.

    CAS  PubMed  Google Scholar 

  166. Kayser MS, Nolt MJ, Dalva MB. EphB receptors couple dendritic filopodia motility to synapse formation. Neuron. 2008;59(1):56–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC, et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron. 2001;32(6):1041–56.

    CAS  PubMed  Google Scholar 

  168. Grunwald IC, Korte M, Wolfer D, Wilkinson GA, Unsicker K, Lipp HP, et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron. 2001;32(6):1027–40.

    CAS  PubMed  Google Scholar 

  169. Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol. 2003;163(6):1313–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Penzes P, Beeser A, Chernoff J, Schiller MR, Eipper BA, Mains RE, et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron. 2003;37(2):263–74.

    CAS  PubMed  Google Scholar 

  171. Tolias KF, Bikoff JB, Kane CG, Tolias CS, Hu L, Greenberg ME. The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proc Natl Acad Sci USA. 2007;104(17):7265–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Irie F, Yamaguchi Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nat Neurosci. 2002;5(11):1117–8.

    CAS  PubMed  Google Scholar 

  173. Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR, et al. EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell. 2010;143(3):442–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Ethell IM, Irie F, Kalo MS, Couchman JR, Pasquale EB, Yamaguchi Y. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron. 2001;31(6):1001–13.

    CAS  PubMed  Google Scholar 

  175. Soskis MJ, Ho HY, Bloodgood BL, Robichaux MA, Malik AN, Ataman B, et al. A chemical genetic approach reveals distinct EphB signaling mechanisms during brain development. Nat Neurosci. 2012;15(12):1645–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci USA. 2009;106(30):12524–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat Neurosci. 2003;6(2):153–60.

    CAS  PubMed  Google Scholar 

  178. Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, et al. Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci. 2007;10(1):67–76.

    CAS  PubMed  Google Scholar 

  179. Richter M, Murai KK, Bourgin C, Pak DT, Pasquale EB. The EphA4 receptor regulates neuronal morphology through SPAR-mediated inactivation of Rap GTPases. J Neurosci. 2007;27(51):14205–15.

    CAS  PubMed  Google Scholar 

  180. Zhou L, Martinez SJ, Haber M, Jones EV, Bouvier D, Doucet G, et al. EphA4 signaling regulates phospholipase Cgamma1 activation, cofilin membrane association, and dendritic spine morphology. J Neurosci. 2007;27(19):5127–38.

    CAS  PubMed  Google Scholar 

  181. Bourgin C, Murai KK, Richter M, Pasquale EB. The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol. 2007;178(7):1295–307.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Lai KO, Ip NY. Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr Opin Neurobiol. 2009;19(3):275–83.

    CAS  PubMed  Google Scholar 

  183. Klein R. Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol. 2004;16(5):580–9.

    CAS  PubMed  Google Scholar 

  184. Contractor A, Rogers C, Maron C, Henkemeyer M, Swanson GT, Heinemann SF. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science. 2002;296(5574):1864–9.

    CAS  PubMed  Google Scholar 

  185. Grunwald IC, Korte M, Adelmann G, Plueck A, Kullander K, Adams RH, et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nat Neurosci. 2004;7(1):33–40.

    CAS  PubMed  Google Scholar 

  186. Bouzioukh F, Wilkinson GA, Adelmann G, Frotscher M, Stein V, Klein R. Tyrosine phosphorylation sites in ephrinB2 are required for hippocampal long-term potentiation but not long-term depression. J Neurosci. 2007;27(42):11279–88.

    CAS  PubMed  Google Scholar 

  187. Filosa A, Paixao S, Honsek SD, Carmona MA, Becker L, Feddersen B, et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci. 2009;12(10):1285–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Deininger K, Eder M, Kramer ER, Zieglgansberger W, Dodt HU, Dornmair K, et al. The Rab5 guanylate exchange factor Rin1 regulates endocytosis of the EphA4 receptor in mature excitatory neurons. Proc Natl Acad Sci USA. 2008;105(34):12539–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Savelieva KV, Rajan I, Baker KB, Vogel P, Jarman W, Allen M, et al. Learning and memory impairment in Eph receptor A6 knockout mice. Neurosci Lett. 2008;438(2):205–9.

    CAS  PubMed  Google Scholar 

  190. Mamiya PC, Hennesy Z, Zhou R, Wagner GC. Changes in attack behavior and activity in EphA5 knockout mice. Brain Res. 2008;1205:91–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Galimberti I, Bednarek E, Donato F, Caroni P. EphA4 signaling in juveniles establishes topographic specificity of structural plasticity in the hippocampus. Neuron. 2010;65(5):627–42.

    CAS  PubMed  Google Scholar 

  192. Clifford MA, Kanwal JK, Dzakpasu R, Donoghue MJ. EphA4 expression promotes network activity and spine maturation in cortical neuronal cultures. Neural Dev. 2011;6:21.

    PubMed Central  PubMed  Google Scholar 

  193. Frank CA, Pielage J, Davis GW. A presynaptic homeostatic signaling system composed of the Eph receptor, ephexin, Cdc42, and CaV2.1 calcium channels. Neuron. 2009;61(4):556–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Fu AKY, Hung KW, Fu WY, Shen C, Chen Y, Xia J, et al. APC(Cdh1) mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat Neurosci. 2011;14(2):181–U263.

    CAS  PubMed  Google Scholar 

  195. Miranda JD, White LA, Marcillo AE, Willson CA, Jagid J, Whittemore SR. Induction of Eph B3 after spinal cord injury. Exp Neurol. 1999;156(1):218–22.

    CAS  PubMed  Google Scholar 

  196. Willson CA, Irizarry-Ramirez M, Gaskins HE, Cruz-Orengo L, Figueroa JD, Whittemore SR, et al. Upregulation of EphA receptor expression in the injured adult rat spinal cord. Cell Transplant. 2002;11(3):229–39.

    PubMed  Google Scholar 

  197. Willson CA, Miranda JD, Foster RD, Onifer SM, Whittemore SR. Transection of the adult rat spinal cord upregulates EphB3 receptor and ligand expression. Cell Transplant. 2003;12(3):279–90.

    PubMed  Google Scholar 

  198. Wu Z, Ghosh-Roy A, Yanik MF, Zhang JZ, Jin Y, Chisholm AD. Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc Natl Acad Sci USA. 2007;104(38):15132–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Liu X, Hawkes E, Ishimaru T, Tran T, Sretavan DW. EphB3: an endogenous mediator of adult axonal plasticity and regrowth after CNS injury. J Neurosci. 2006;26(12):3087–101.

    CAS  PubMed  Google Scholar 

  200. Parrinello S, Napoli I, Ribeiro S, Digby PW, Fedorova M, Parkinson DB, et al. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell. 2010;143(1):145–55.

    CAS  PubMed  Google Scholar 

  201. Fabes J, Anderson P, Yanez-Munoz RJ, Thrasher A, Brennan C, Bolsover S. Accumulation of the inhibitory receptor EphA4 may prevent regeneration of corticospinal tract axons following lesion. Eur J Neurosci. 2006;23(7):1721–30.

    PubMed  Google Scholar 

  202. Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM. Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci. 2004;24(45):10064–73.

    CAS  PubMed  Google Scholar 

  203. Cruz-Orengo L, Figueroa JD, Velazquez I, Torrado A, Ortiz C, Hernandez C, et al. Blocking EphA4 upregulation after spinal cord injury results in enhanced chronic pain. Exp Neurol. 2006;202(2):421–33.

    CAS  PubMed  Google Scholar 

  204. Fabes J, Anderson P, Brennan C, Bolsover S. Regeneration-enhancing effects of EphA4 blocking peptide following corticospinal tract injury in adult rat spinal cord. Eur J Neurosci. 2007;26(9):2496–505.

    PubMed  Google Scholar 

  205. Goldshmit Y, Spanevello MD, Tajouri S, Li L, Rogers F, Pearse M, et al. EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS One. 2011;6(9):e24636.

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Herrmann JE, Shah RR, Chan AF, Zheng B. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury. Exp Neurol. 2010;223(2):582–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Erber R, Eichelsbacher U, Powajbo V, Korn T, Djonov V, Lin J, et al. EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J. 2006;25(3):628–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM, et al. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol. 2001;230(2):151–60.

    CAS  PubMed  Google Scholar 

  209. Shin D, Garcia-Cardena G, Hayashi S, Gerety S, Asahara T, Stavrakis G, et al. Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol. 2001;230(2):139–50.

    CAS  PubMed  Google Scholar 

  210. Muto A, Yi T, Harrison KD, Davalos A, Fancher TT, Ziegler KR, et al. Eph-B4 prevents venous adaptive remodeling in the adult arterial environment. J Exp Med. 2011;208(3):561–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Ogita H, Kunimoto S, Kamioka Y, Sawa H, Masuda M, Mochizuki N. EphA4-mediated Rho activation via Vsm-RhoGEF expressed specifically in vascular smooth muscle cells. Circ Res. 2003;93(1):23–31.

    CAS  PubMed  Google Scholar 

  212. Noren NK, Lu M, Freeman AL, Koolpe M, Pasquale EB. Interplay between EphB4 on tumor cells and vascular ephrin-B2 regulates tumor growth. Proc Natl Acad Sci USA. 2004;101(15):5583–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene. 2000;19(52):6043–52.

    CAS  PubMed  Google Scholar 

  214. Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest. 2008;118(1):64–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Brantley-Sieders DM, Fang WB, Hwang Y, Hicks D, Chen J. Ephrin-A1 facilitates mammary tumor metastasis through an angiogenesis-dependent mechanism mediated by EphA receptor and vascular endothelial growth factor in mice. Cancer Res. 2006;66(21):10315–24.

    CAS  PubMed  Google Scholar 

  216. Prevost N, Woulfe D, Tanaka T, Brass LF. Interactions between Eph kinases and ephrins provide a mechanism to support platelet aggregation once cell-to-cell contact has occurred. Proc Natl Acad Sci USA. 2002;99(14):9219–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Prevost N, Woulfe DS, Jiang H, Stalker TJ, Marchese P, Ruggeri ZM, et al. Eph kinases and ephrins support thrombus growth and stability by regulating integrin outside-in signaling in platelets. Proc Natl Acad Sci USA. 2005;102(28):9820–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Prevost N, Woulfe DS, Tognolini M, Tanaka T, Jian W, Fortna RR, et al. Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of ephrinB1. Blood. 2004;103(4):1348–55.

    CAS  PubMed  Google Scholar 

  219. Luo H, Yu G, Tremblay J, Wu J. EphB6-null mutation results in compromised T cell function. J Clin Invest. 2004;114(12):1762–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Freywald A, Sharfe N, Miller CD, Rashotte C, Roifman CM. EphA receptors inhibit anti-CD3-induced apoptosis in thymocytes. J Immunol. 2006;176(7):4066–74.

    CAS  PubMed  Google Scholar 

  221. Sharfe N, Nikolic M, Cimpeon L, Van De Kratts A, Freywald A, Roifman CM. EphA and ephrin-A proteins regulate integrin-mediated T lymphocyte interactions. Mol Immunol. 2008;45(5):1208–20.

    CAS  PubMed  Google Scholar 

  222. Aasheim HC, Munthe E, Funderud S, Smeland EB, Beiske K, Logtenberg T. A splice variant of human ephrin-A4 encodes a soluble molecule that is secreted by activated human B lymphocytes. Blood. 2000;95(1):221–30.

    CAS  PubMed  Google Scholar 

  223. Konstantinova I, Nikolova G, Ohara-Imaizumi M, Meda P, Kucera T, Zarbalis K, et al. EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell. 2007;129(2):359–70.

    CAS  PubMed  Google Scholar 

  224. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–7.

    CAS  PubMed  Google Scholar 

  225. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111(2):241–50.

    PubMed  Google Scholar 

  226. van Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S, Hatzis P, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol. 2005;7(4):381–6.

    PubMed  Google Scholar 

  227. Cortina C, Palomo-Ponce S, Iglesias M, Fernandez-Masip JL, Vivancos A, Whissell G, et al. EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat Genet. 2007;39(11):1376–83.

    CAS  PubMed  Google Scholar 

  228. Holmberg J, Genander M, Halford MM, Anneren C, Sondell M, Chumley MJ, et al. EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell. 2006;125(6):1151–63.

    CAS  PubMed  Google Scholar 

  229. Andres AC, Ziemiecki A. Eph and ephrin signaling in mammary gland morphogenesis and cancer. J Mammary Gland Biol Neoplasia. 2003;8(4):475–85.

    PubMed  Google Scholar 

  230. Munarini N, Jager R, Abderhalden S, Zuercher G, Rohrbach V, Loercher S, et al. Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. J Cell Sci. 2002;115(Pt 1):25–37.

    CAS  PubMed  Google Scholar 

  231. Ogawa K, Wada H, Okada N, Harada I, Nakajima T, Pasquale EB, et al. EphB2 and ephrin-B1 expressed in the adult kidney regulate the cytoarchitecture of medullary tubule cells through Rho family GTPases. J Cell Sci. 2006;119(Pt 3):559–70.

    CAS  PubMed  Google Scholar 

  232. Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4(2):111–21.

    CAS  PubMed  Google Scholar 

  233. Edwards CM, Mundy GR. Eph receptors and ephrin signaling pathways: a role in bone homeostasis. Int J Med Sci. 2008;5(5):263–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Lickliter JD, Smith FM, Olsson JE, Mackwell KL, Boyd AW. Embryonic stem cells express multiple Eph-subfamily receptor tyrosine kinases. Proc Natl Acad Sci USA. 1996;93(1):145–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Wang Z, Cohen K, Shao Y, Mole P, Dombkowski D, Scadden DT. Ephrin receptor, EphB4, regulates ES cell differentiation of primitive mammalian hemangioblasts, blood, cardiomyocytes, and blood vessels. Blood. 2004;103(1):100–9.

    CAS  PubMed  Google Scholar 

  236. Chen K, Bai H, Liu Y, Hoyle D, Shen WF, Wu LQ, et al. EphB4 forward-signaling regulates cardiac progenitor development in mouse ES cells. J Cell Biochem. 2014;116:467–75.

    Google Scholar 

  237. Nikolova Z, Djonov V, Zuercher G, Andres AC, Ziemiecki A. Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis. J Cell Sci. 1998;111(Pt 18):2741–51.

    CAS  PubMed  Google Scholar 

  238. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, et al. Defining the epithelial stem cell niche in skin. Science. 2004;303(5656):359–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Guo H, Miao H, Gerber L, Singh J, Denning MF, Gilliam AC, et al. Disruption of EphA2 receptor tyrosine kinase leads to increased susceptibility to carcinogenesis in mouse skin. Cancer Res. 2006;66(14):7050–8.

    CAS  PubMed  Google Scholar 

  240. Genander M, Holmberg J, Frisen J. Ephrins negatively regulate cell proliferation in the epidermis and hair follicle. Stem Cells. 2010;28(7):1196–205.

    CAS  PubMed  Google Scholar 

  241. van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241–60.

    PubMed  Google Scholar 

  242. Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.

    CAS  PubMed  Google Scholar 

  243. Jiao JW, Feldheim DA, Chen DF. Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system. Proc Natl Acad Sci USA. 2008;105(25):8778–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev. 2005;19(4):462–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  245. Conover JC, Doetsch F, Garcia-Verdugo JM, Gale NW, Yancopoulos GD, Alvarez-Buylla A. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci. 2000;3(11):1091–7.

    CAS  PubMed  Google Scholar 

  246. Ricard J, Salinas J, Garcia L, Liebl DJ. EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Mol Cell Neurosci. 2006;31(4):713–22.

    CAS  PubMed  Google Scholar 

  247. Theus MH, Ricard J, Bethea JR, Liebl DJ. EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury. Stem Cells. 2010;28(7):1231–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Chumley MJ, Catchpole T, Silvany RE, Kernie SG, Henkemeyer M. EphB receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis. J Neurosci. 2007;27(49):13481–90.

    CAS  PubMed  Google Scholar 

  249. Hara Y, Nomura T, Yoshizaki K, Frisen J, Osumi N. Impaired hippocampal neurogenesis and vascular formation in ephrin-A5-deficient mice. Stem Cells. 2010;28(5):974–83.

    CAS  PubMed  Google Scholar 

  250. Nomura T, Goritz C, Catchpole T, Henkemeyer M, Frisen J. EphB signaling controls lineage plasticity of adult neural stem cell niche cells. Cell Stem Cell. 2010;7(6):730–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Khodosevich K, Watanabe Y, Monyer H. EphA4 preserves postnatal and adult neural stem cells in an undifferentiated state in vivo. J Cell Sci. 2011;124(Pt 8):1268–79.

    CAS  PubMed  Google Scholar 

  252. Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F. A novel putative tyrosine kinase receptor encoded by the eph gene. Science. 1987;238(4834):1717–20.

    CAS  PubMed  Google Scholar 

  253. Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010;10(3):165–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Macrae M, Neve RM, Rodriguez-Viciana P, Haqq C, Yeh J, Chen C, et al. A conditional feedback loop regulates Ras activity through EphA2. Cancer Cell. 2005;8(2):111–8.

    CAS  PubMed  Google Scholar 

  255. Miao H, Wei BR, Peehl DM, Li Q, Alexandrou T, Schelling JR, et al. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol. 2001;3(5):527–30.

    CAS  PubMed  Google Scholar 

  256. Zelinski DP, Zantek ND, Stewart JC, Irizarry AR, Kinch MS. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res. 2001;61(5):2301–6.

    CAS  PubMed  Google Scholar 

  257. Fox BP, Kandpal RP. EphB6 receptor significantly alters invasiveness and other phenotypic characteristics of human breast carcinoma cells. Oncogene. 2009;28(14):1706–13.

    CAS  PubMed  Google Scholar 

  258. Truitt L, Freywald T, DeCoteau J, Sharfe N, Freywald A. The EphB6 receptor cooperates with c-Cbl to regulate the behavior of breast cancer cells. Cancer Res. 2010;70(3):1141–53.

    CAS  PubMed  Google Scholar 

  259. Oki M, Yamamoto H, Taniguchi H, Adachi Y, Imai K, Shinomura Y. Overexpression of the receptor tyrosine kinase EphA4 in human gastric cancers. World J Gastroenterol. 2008;14(37):5650–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Saito T, Masuda N, Miyazaki T, Kanoh K, Suzuki H, Shimura T, et al. Expression of EphA2 and E-cadherin in colorectal cancer: correlation with cancer metastasis. Oncol Rep. 2004;11(3):605–11.

    CAS  PubMed  Google Scholar 

  261. Batlle E, Bacani J, Begthel H, Jonkheer S, Gregorieff A, van de Born M, et al. EphB receptor activity suppresses colorectal cancer progression. Nature. 2005;435(7045):1126–30.

    CAS  PubMed  Google Scholar 

  262. Davalos V, Dopeso H, Castano J, Wilson AJ, Vilardell F, Romero-Gimenez J, et al. EPHB4 and survival of colorectal cancer patients. Cancer Res. 2006;66(18):8943–8.

    CAS  PubMed  Google Scholar 

  263. Herath NI, Doecke J, Spanevello MD, Leggett BA, Boyd AW. Epigenetic silencing of EphA1 expression in colorectal cancer is correlated with poor survival. Br J Cancer. 2009;100(7):1095–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  264. Ronsch K, Jager M, Schopflin A, Danciu M, Lassmann S, Hecht A. Class I and III HDACs and loss of active chromatin features contribute to epigenetic silencing of CDX1 and EPHB tumor suppressor genes in colorectal cancer. Epigenetics. 2011;6(5):610–22.

    PubMed  Google Scholar 

  265. Kumar SR, Scehnet JS, Ley EJ, Singh J, Krasnoperov V, Liu R, et al. Preferential induction of EphB4 over EphB2 and its implication in colorectal cancer progression. Cancer Res. 2009;69(9):3736–45.

    CAS  PubMed  Google Scholar 

  266. Dopeso H, Mateo-Lozano S, Mazzolini R, Rodrigues P, Lagares-Tena L, Ceron J, et al. The receptor tyrosine kinase EPHB4 has tumor suppressor activities in intestinal tumorigenesis. Cancer Res. 2009;69(18):7430–8.

    CAS  PubMed  Google Scholar 

  267. Lisabeth EM, Fernandez C, Pasquale EB. Cancer somatic mutations disrupt functions of the EphA3 receptor tyrosine kinase through multiple mechanisms. Biochemistry. 2012;51:1464–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  268. Prickett TD, Agrawal NS, Wei X, Yates KE, Lin JC, Wunderlich JR, et al. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet. 2009;41(10):1127–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  269. Vail ME, Murone C, Tan A, Hii L, Abebe D, Janes PW, et al. Targeting EphA3 inhibits cancer growth by disrupting the tumor stromal microenvironment. Cancer Res. 2014;74(16):4470–81.

    CAS  PubMed  Google Scholar 

  270. Miao H, Li DQ, Mukherjee A, Guo H, Petty A, Cutter J, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell. 2009;16(1):9–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  271. Wu Z, Doondeea JB, Moghaddas Gholami A, Janning MC, Lemeer S, Kramer K, et al. Quantitative chemical proteomics reveals new potential drug targets in head and neck cancer. Mol Cell Proteomics. 2011;10(12):M111.011635.

    PubMed Central  PubMed  Google Scholar 

  272. Salaita K, Nair PM, Petit RS, Neve RM, Das D, Gray JW, et al. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science. 2010;327(5971):1380–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  273. Hiramoto-Yamaki N, Takeuchi S, Ueda S, Harada K, Fujimoto S, Negishi M, et al. Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. J Cell Biol. 2010;190(3):461–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  274. Noren NK, Foos G, Hauser CA, Pasquale EB. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol. 2006;8(8):815–25.

    CAS  PubMed  Google Scholar 

  275. Kumar SR, Singh J, Xia G, Krasnoperov V, Hassanieh L, Ley EJ, et al. Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am J Pathol. 2006;169(1):279–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  276. Astin JW, Batson J, Kadir S, Charlet J, Persad RA, Gillatt D, et al. Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells. Nat Cell Biol. 2010;12(12):1194–204.

    CAS  PubMed  Google Scholar 

  277. Heroult M, Schaffner F, Pfaff D, Prahst C, Kirmse R, Kutschera S, et al. EphB4 promotes site-specific metastatic tumor cell dissemination by interacting with endothelial cell-expressed ephrinB2. Mol Cancer Res. 2010;8(10):1297–309.

    CAS  PubMed  Google Scholar 

  278. Huang X, Yamada Y, Kidoya H, Naito H, Nagahama Y, Kong L, et al. EphB4 overexpression in B16 melanoma cells affects arterial-venous patterning in tumor angiogenesis. Cancer Res. 2007;67(20):9800–8.

    CAS  PubMed  Google Scholar 

  279. Barquilla A, Pasquale EB. Eph receptors and ephrins: therapeutic opportunities. Annu Rev Pharmacol Toxicology. 2015;55:465–87.

    CAS  Google Scholar 

  280. Udayakumar D, Zhang G, Ji Z, Njauw CN, Mroz P, Tsao H. Epha2 is a critical oncogene in melanoma. Oncogene. 2011;30(50):4921–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  281. Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y, et al. Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res. 2004;64(17):5963–72.

    CAS  PubMed  Google Scholar 

  282. Iiizumi M, Hosokawa M, Takehara A, Chung S, Nakamura T, Katagiri T, et al. EphA4 receptor, overexpressed in pancreatic ductal adenocarcinoma, promotes cancer cell growth. Cancer Sci. 2006;97(11):1211–6.

    CAS  PubMed  Google Scholar 

  283. Martiny-Baron G, Holzer P, Billy E, Schnell C, Brueggen J, Ferretti M, et al. The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis. Angiogenesis. 2010;13(3):259–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  284. Noberini R, Koolpe M, Peddibhotla S, Dahl R, Su Y, Cosford ND, et al. Small molecules can selectively inhibit ephrin binding to the EphA4 and EphA2 receptors. J Biol Chem. 2008;283(43):29461–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  285. Chang Q, Jorgensen C, Pawson T, Hedley DW. Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer. Br J Cancer. 2008;99(7):1074–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  286. Huang J, Hu W, Bottsford-Miller J, Liu T, Han HD, Zand B, et al. Cross-talk between EphA2 and BRaf/CRaf is a key determinant of response to Dasatinib. Clin Cancer Res. 2014;20(7):1846–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  287. Oricchio E, Nanjangud G, Wolfe AL, Schatz JH, Mavrakis KJ, Jiang M, et al. The eph-receptor a7 is a soluble tumor suppressor for follicular lymphoma. Cell. 2011;147(3):554–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res. 2002;62(10):2840–7.

    CAS  PubMed  Google Scholar 

  289. Wykosky J, Gibo DM, Debinski W. A novel, potent, and specific ephrinA1-based cytotoxin against EphA2 receptor expressing tumor cells. Mol Cancer Ther. 2007;6(12 Pt 1):3208–18.

    CAS  PubMed  Google Scholar 

  290. Shaw A, Lundin V, Petrova E, Fordos F, Benson E, Al-Amin A, et al. Spatial control of membrane receptor function using ligand nanocalipers. Nat Methods. 2014;11(8):841–6.

    CAS  PubMed  Google Scholar 

  291. You J, Zhang R, Xiong C, Zhong M, Melancon M, Gupta S, et al. Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Res. 2012;72(18):4777–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  292. Simon AM, de Maturana RL, Ricobaraza A, Escribano L, Schiapparelli L, Cuadrado-Tejedor M, et al. Early changes in hippocampal Eph receptors precede the onset of memory decline in mouse models of Alzheimer’s disease. J Alzheimers Dis. 2009;17(4):773–86.

    CAS  PubMed  Google Scholar 

  293. Cisse M, Halabisky B, Harris J, Devidze N, Dubal DB, Sun B, et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature. 2011;469(7328):47–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  294. Tsuda H, Han SM, Yang Y, Tong C, Lin YQ, Mohan K, et al. The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell. 2008;133(6):963–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  295. Van Hoecke A, Schoonaert L, Lemmens R, Timmers M, Staats KA, Laird AS, et al. EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nat Med. 2012;18(9):1418–22.

    PubMed  Google Scholar 

  296. Casey JP, Magalhaes T, Conroy JM, Regan R, Shah N, Anney R, et al. A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Hum Genet. 2011;131:565–79.

    PubMed Central  PubMed  Google Scholar 

  297. Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med. 2011;17(5):589–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  298. Yamazaki T, Masuda J, Omori T, Usui R, Akiyama H, Maru Y. EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. J Cell Sci. 2009;122(Pt 2):243–55.

    CAS  PubMed  Google Scholar 

  299. Duffy SL, Coulthard MG, Spanevello MD, Herath NI, Yeadon TM, McCarron JK, et al. Generation and characterization of EphA1 receptor tyrosine kinase reporter knockout mice. Genesis. 2008;46(10):553–61.

    CAS  PubMed  Google Scholar 

  300. Du X, Baldwin C, Hooker E, Glorion P, Lemay S. Basal and Src kinase-mediated activation of the EphA2 promoter requires a cAMP-responsive element but is CREB-independent. J Cell Biochem. 2011;112(5):1268–76.

    CAS  PubMed  Google Scholar 

  301. Foveau B, Boulay G, Pinte S, Van Rechem C, Rood BR, Leprince D. The receptor tyrosine kinase EphA2 is a direct target gene of hypermethylated in cancer 1 (HIC1). J Biol Chem. 2012;287(8):5366–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  302. Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K, Atapattu L, et al. Architecture of Eph receptor clusters. Proc Natl Acad Sci USA. 2010;107(24):10860–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  303. Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat Struct Mol Biol. 2010;17(4):398–402.

    CAS  PubMed Central  PubMed  Google Scholar 

  304. Fang WB, Brantley-Sieders DM, Hwang Y, Ham AJ, Chen J. Identification and functional analysis of phosphorylated tyrosine residues within EphA2 receptor tyrosine kinase. J Biol Chem. 2008;283(23):16017–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  305. Wykosky J, Palma E, Gibo DM, Ringler S, Turner CP, Debinski W. Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene. 2008;27(58):7260–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  306. Wakayama Y, Miura K, Sabe H, Mochizuki N. EphrinA1-EphA2 signal induces compaction and polarization of Madin-Darby canine kidney cells by inactivating Ezrin through negative regulation of RhoA. J Biol Chem. 2011;286(51):44243–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  307. Miura K, Nam JM, Kojima C, Mochizuki N, Sabe H. EphA2 engages Git1 to suppress Arf6 activity modulating epithelial cell-cell contacts. Mol Biol Cell. 2009;20(7):1949–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  308. Miao H, Burnett E, Kinch M, Simon E, Wang B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol. 2000;2(2):62–9.

    CAS  PubMed  Google Scholar 

  309. Seiradake E, Schaupp A, del Toro RD, Kaufmann R, Mitakidis N, Harlos K, et al. Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nat Struct Mol Biol. 2013;20(8):958–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  310. Ruiz JC, Robertson EJ. The expression of the receptor-protein tyrosine kinase gene, eck, is highly restricted during early mouse development. Mech Dev. 1994;46(2):87–100.

    CAS  PubMed  Google Scholar 

  311. Ganju P, Shigemoto K, Brennan J, Entwistle A, Reith AD. The Eck receptor tyrosine kinase is implicated in pattern formation during gastrulation, hindbrain segmentation and limb development. Oncogene. 1994;9(6):1613–24.

    CAS  PubMed  Google Scholar 

  312. Dottori M, Down M, Huttmann A, Fitzpatrick DR, Boyd AW. Cloning and characterization of EphA3 (Hek) gene promoter: DNA methylation regulates expression in hematopoietic tumor cells. Blood. 1999;94(7):2477–86.

    CAS  PubMed  Google Scholar 

  313. Hinoue T, Weisenberger DJ, Pan F, Campan M, Kim M, Young J, et al. Analysis of the association between CIMP and BRAF in colorectal cancer by DNA methylation profiling. PLoS One. 2009;4(12):e8357.

    PubMed Central  PubMed  Google Scholar 

  314. Cobb J, Duboule D. Comparative analysis of genes downstream of the Hoxd cluster in developing digits and external genitalia. Development. 2005;132(13):3055–67.

    CAS  PubMed  Google Scholar 

  315. Kawakami Y, Uchiyama Y, Rodriguez Esteban C, Inenaga T, Koyano-Nakagawa N, Kawakami H, et al. Sall genes regulate region-specific morphogenesis in the mouse limb by modulating Hox activities. Development. 2009;136(4):585–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  316. Schulte D, Cepko CL. Two homeobox genes define the domain of EphA3 expression in the developing chick retina. Development. 2000;127(23):5033–45.

    CAS  PubMed  Google Scholar 

  317. Takahashi H, Shintani T, Sakuta H, Noda M. CBF1 controls the retinotectal topographical map along the anteroposterior axis through multiple mechanisms. Development. 2003;130(21):5203–15.

    CAS  PubMed  Google Scholar 

  318. Smith LM, Walsh PT, Rudiger T, Cotter TG, Mc Carthy TV, Marx A, et al. EphA3 is induced by CD28 and IGF-1 and regulates cell adhesion. Exp Cell Res. 2004;292(2):295–303.

    CAS  PubMed  Google Scholar 

  319. Li YY, McTiernan CF, Feldman AM. IL-1 beta alters the expression of the receptor tyrosine kinase gene r-EphA3 in neonatal rat cardiomyocytes. Am J Physiol. 1998;274(1 Pt 2):H331–41.

    CAS  PubMed  Google Scholar 

  320. Lawrenson ID, Wimmer-Kleikamp SH, Lock P, Schoenwaelder SM, Down M, Boyd AW, et al. Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293 T and melanoma cells by CrkII and Rho-mediated signalling. J Cell Sci. 2002;115(Pt 5):1059–72.

    CAS  PubMed  Google Scholar 

  321. Hu T, Shi G, Larose L, Rivera GM, Mayer BJ, Zhou R. Regulation of process retraction and cell migration by EphA3 is mediated by the adaptor protein Nck1. Biochemistry. 2009;48(27):6369–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  322. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, et al. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell. 2005;123(2):291–304.

    CAS  PubMed  Google Scholar 

  323. Zisch AH, Kalo MS, Chong LD, Pasquale EB. Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Oncogene. 1998;16(20):2657–70.

    CAS  PubMed  Google Scholar 

  324. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, et al. PTP1B regulates Eph receptor function and trafficking. J Cell Biol. 2010;191(6):1189–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  325. Janes PW, Griesshaber B, Atapattu L, Nievergall E, Hii LL, Mensinga A, et al. Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors. J Cell Biol. 2011;195:1033–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  326. Nakajima Y, Morimoto M, Takahashi Y, Koseki H, Saga Y. Identification of Epha4 enhancer required for segmental expression and the regulation by Mesp2. Development. 2006;133(13):2517–25.

    CAS  PubMed  Google Scholar 

  327. Theil T, Frain M, Gilardi-Hebenstreit P, Flenniken A, Charnay P, Wilkinson DG. Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development. 1998;125(3):443–52.

    CAS  PubMed  Google Scholar 

  328. Escalante A, Murillo B, Morenilla-Palao C, Klar A, Herrera E. Zic2-dependent axon midline avoidance controls the formation of major ipsilateral tracts in the CNS. Neuron. 2013;80(6):1392–406.

    CAS  PubMed  Google Scholar 

  329. Qin H, Shi J, Noberini R, Pasquale EB, Song J. Crystal structure and NMR binding reveal that two small molecule antagonists target the high affinity ephrin-binding channel of the EphA4 receptor. J Biol Chem. 2008;283(43):29473–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  330. Qin H, Noberini R, Huan X, Shi J, Pasquale EB, Song J. Structural characterization of the EphA4-Ephrin-B2 complex reveals new features enabling Eph-ephrin binding promiscuity. J Biol Chem. 2010;285(1):644–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  331. Stapleton D, Balan I, Pawson T, Sicheri F. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol. 1999;6(1):44–9.

    CAS  PubMed  Google Scholar 

  332. Ellis C, Kasmi F, Ganju P, Walls E, Panayotou G, Reith AD. A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene. 1996;12(8):1727–36.

    CAS  PubMed  Google Scholar 

  333. Binns KL, Taylor PP, Sicheri F, Pawson T, Holland SJ. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol Cell Biol. 2000;20(13):4791–805.

    CAS  PubMed Central  PubMed  Google Scholar 

  334. Park EK, Warner N, Bong YS, Stapleton D, Maeda R, Pawson T, et al. Ectopic EphA4 receptor induces posterior protrusions via FGF signaling in Xenopus embryos. Mol Biol Cell. 2004;15(4):1647–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  335. Sahin M, Greer PL, Lin MZ, Poucher H, Eberhart J, Schmidt S, et al. Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron. 2005;46(2):191–204.

    CAS  PubMed  Google Scholar 

  336. Shamah SM, Lin MZ, Goldberg JL, Estrach S, Sahin M, Hu L, et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor Ephexin. Cell. 2001;105(2):233–44.

    CAS  PubMed  Google Scholar 

  337. Dudanova I, Gatto G, Klein R. GDNF acts as a chemoattractant to support ephrinA-induced repulsion of limb motor axons. Curr Biol. 2010;20(23):2150–6.

    CAS  PubMed  Google Scholar 

  338. Kramer ER, Knott L, Su F, Dessaud E, Krull CE, Helmbacher F, et al. Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor-axon pathway selection in the limb. Neuron. 2006;50(1):35–47.

    CAS  PubMed  Google Scholar 

  339. Fukai J, Yokote H, Yamanaka R, Arao T, Nishio K, Itakura T. EphA4 promotes cell proliferation and migration through a novel EphA4-FGFR1 signaling pathway in the human glioma U251 cell line. Mol Cancer Ther. 2008;7(9):2768–78.

    CAS  PubMed  Google Scholar 

  340. Petkova TD, Seigel GM, Otteson DC. A role for DNA methylation in regulation of EphA5 receptor expression in the mouse retina. Vision Res. 2011;51(2):260–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  341. Fu DY, Wang ZM, Wang BL, Chen L, Yang WT, Shen ZZ, et al. Frequent epigenetic inactivation of the receptor tyrosine kinase EphA5 by promoter methylation in human breast cancer. Hum Pathol. 2010;41(1):48–58.

    CAS  PubMed  Google Scholar 

  342. Jassen AK, Yang H, Miller GM, Calder E, Madras BK. Receptor regulation of gene expression of axon guidance molecules: implications for adaptation. Mol Pharmacol. 2006;70(1):71–7.

    CAS  PubMed  Google Scholar 

  343. Fukushima K, Ueno Y, Inoue J, Kanno N, Shimosegawa T. Filopodia formation via a specific Eph family member and PI3K in immortalized cholangiocytes. Am J Physiol Gastrointest Liver Physiol. 2006;291(5):G812–9.

    CAS  PubMed  Google Scholar 

  344. Shaut CA, Saneyoshi C, Morgan EA, Knosp WM, Sexton DR, Stadler HS. HOXA13 directly regulates EphA6 and EphA7 expression in the genital tubercle vascular endothelia. Dev Dyn. 2007;236(4):951–60.

    CAS  PubMed  Google Scholar 

  345. Maisonpierre PC, Barrezueta NX, Yancopoulos GD. Ehk-1 and Ehk-2: two novel members of the Eph receptor-like tyrosine kinase family with distinctive structures and neuronal expression. Oncogene. 1993;8(12):3277–88.

    CAS  PubMed  Google Scholar 

  346. Salsi V, Zappavigna V. Hoxd13 and Hoxa13 directly control the expression of the EphA7 Ephrin tyrosine kinase receptor in developing limbs. J Biol Chem. 2006;281(4):1992–9.

    CAS  PubMed  Google Scholar 

  347. Pietri S, Dimidschstein J, Tiberi L, Sotiropoulou PA, Bilheu A, Goffinet A, et al. Transcriptional Mechanisms of EphA7 Gene Expression in the Developing Cerebral Cortex. Cereb Cortex. 2011;27:1678–89.

    Google Scholar 

  348. Stadler HS, Higgins KM, Capecchi MR. Loss of Eph-receptor expression correlates with loss of cell adhesion and chondrogenic capacity in Hoxa13 mutant limbs. Development. 2001;128(21):4177–88.

    CAS  PubMed  Google Scholar 

  349. Nakanishi H, Nakamura T, Canaani E, Croce CM. ALL1 fusion proteins induce deregulation of EphA7 and ERK phosphorylation in human acute leukemias. Proc Natl Acad Sci USA. 2007;104(36):14442–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  350. Wang J, Kataoka H, Suzuki M, Sato N, Nakamura R, Tao H, et al. Downregulation of EphA7 by hypermethylation in colorectal cancer. Oncogene. 2005;24(36):5637–47.

    CAS  PubMed  Google Scholar 

  351. Ciossek T, Millauer B, Ullrich A. Identification of alternatively spliced mRNAs encoding variants of MDK1, a novel receptor tyrosine kinase expressed in the murine nervous system. Oncogene. 1995;10(1):97–108.

    CAS  PubMed  Google Scholar 

  352. Valenzuela DM, Rojas E, Griffiths JA, Compton DL, Gisser M, Ip NY, et al. Identification of full-length and truncated forms of Ehk-3, a novel member of the Eph receptor tyrosine kinase family. Oncogene. 1995;10(8):1573–80.

    CAS  PubMed  Google Scholar 

  353. Tsuboi M, Mori H, Bunai T, Kageyama S, Suzuki M, Okudela K, et al. Secreted form of EphA7 in lung cancer. Int J Oncol. 2010;36(3):635–40.

    CAS  PubMed  Google Scholar 

  354. Torres R, Firestein BL, Dong H, Staudinger J, Olson EN, Huganir RL, et al. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron. 1998;21(6):1453–63.

    CAS  PubMed  Google Scholar 

  355. Jeong J, Choi S, Gu C, Lee H, Park S. Genomic structure and promoter analysis of the mouse EphA8 receptor tyrosine kinase gene. DNA Cell Biol. 2000;19(5):291–300.

    CAS  PubMed  Google Scholar 

  356. Shim S, Kim Y, Shin J, Kim J, Park S. Regulation of EphA8 gene expression by TALE homeobox transcription factors during development of the mesencephalon. Mol Cell Biol. 2007;27(5):1614–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  357. Choi S, Park S. Phosphorylation at Tyr-838 in the kinase domain of EphA8 modulates Fyn binding to the Tyr-615 site by enhancing tyrosine kinase activity. Oncogene. 1999;18(39):5413–22.

    CAS  PubMed  Google Scholar 

  358. Gu C, Shim S, Shin J, Kim J, Park J, Han K, et al. The EphA8 receptor induces sustained MAP kinase activation to promote neurite outgrowth in neuronal cells. Oncogene. 2005;24(26):4243–56.

    CAS  PubMed  Google Scholar 

  359. Shin J, Gu C, Park E, Park S. Identification of phosphotyrosine binding domain-containing proteins as novel downstream targets of the EphA8 signaling function. Mol Cell Biol. 2007;27(23):8113–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  360. Gu C, Park S. The EphA8 receptor regulates integrin activity through p110gamma phosphatidylinositol-3 kinase in a tyrosine kinase activity-independent manner. Mol Cell Biol. 2001;21(14):4579–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  361. Yoo S, Shin J, Park S. EphA8-ephrinA5 signaling and clathrin-mediated endocytosis is regulated by Tiam-1, a Rac-specific guanine nucleotide exchange factor. Mol Cells. 2010;29(6):603–9.

    CAS  PubMed  Google Scholar 

  362. Kim J, Lee H, Kim Y, Yoo S, Park E, Park S. The SAM domains of Anks family proteins are critically involved in modulating the degradation of EphA receptors. Mol Cell Biol. 2010;30(7):1582–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  363. Truitt L, Freywald A. Dancing with the dead: Eph receptors and their kinase-null partners. Biochem Cell Biol. 2011;89(2):115–29.

    CAS  PubMed  Google Scholar 

  364. Aasheim HC, Patzke S, Hjorthaug HS, Finne EF. Characterization of a novel Eph receptor tyrosine kinase, EphA10, expressed in testis. Biochim Biophys Acta. 2005;1723(1–3):1–7.

    CAS  PubMed  Google Scholar 

  365. Garcia-Frigola C, Carreres MI, Vegar C, Mason C, Herrera E. Zic2 promotes axonal divergence at the optic chiasm midline by EphB1-dependent and -independent mechanisms. Development. 2008;135(10):1833–41.

    CAS  PubMed  Google Scholar 

  366. Han DC, Shen TL, Miao H, Wang B, Guan JL. EphB1 associates with Grb7 and regulates cell migration. J Biol Chem. 2002;277(47):45655–61.

    CAS  PubMed  Google Scholar 

  367. Vindis C, Teli T, Cerretti DP, Turner CE, Huynh-Do U. EphB1-mediated cell migration requires the phosphorylation of paxillin at Tyr-31/Tyr-118. J Biol Chem. 2004;279(27):27965–70.

    CAS  PubMed  Google Scholar 

  368. Becker E, Huynh-Do U, Holland S, Pawson T, Daniel TO, Skolnik EY. Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol Cell Biol. 2000;20(5):1537–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  369. Stein E, Huynh-Do U, Lane AA, Cerretti DP, Daniel TO. Nck recruitment to Eph receptor, EphB1/ELK, couples ligand activation to c-Jun kinase. J Biol Chem. 1998;273(3):1303–8.

    CAS  PubMed  Google Scholar 

  370. Vindis C, Cerretti DP, Daniel TO, Huynh-Do U. EphB1 recruits c-Src and p52Shc to activate MAPK/ERK and promote chemotaxis. J Cell Biol. 2003;162(4):661–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  371. Georgakopoulos A, Litterst C, Ghersi E, Baki L, Xu C, Serban G, et al. Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO J. 2006;25(6):1242–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  372. Pascall JC, Brown KD. Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDL2. Biochem Biophys Res Commun. 2004;317(1):244–52.

    CAS  PubMed  Google Scholar 

  373. Freywald A, Sharfe N, Roifman CM. The kinase-null EphB6 receptor undergoes transphosphorylation in a complex with EphB1. J Biol Chem. 2002;277(6):3823–8.

    CAS  PubMed  Google Scholar 

  374. Huynh-Do U, Stein E, Lane AA, Liu H, Cerretti DP, Daniel TO. Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. EMBO J. 1999;18(8):2165–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  375. Fasen K, Cerretti DP, Huynh-Do U. Ligand binding induces Cbl-dependent EphB1 receptor degradation through the lysosomal pathway. Traffic. 2008;9(2):251–66.

    CAS  PubMed  Google Scholar 

  376. Fu T, Li P, Wang H, He Y, Luo D, Zhang A, et al. c-Rel is a transcriptional repressor of EPHB2 in colorectal cancer. J Pathol. 2009;219(1):103–13.

    CAS  PubMed  Google Scholar 

  377. Mui SH, Hindges R, O'Leary DD, Lemke G, Bertuzzi S. The homeodomain protein Vax2 patterns the dorsoventral and nasotemporal axes of the eye. Development. 2002;129(3):797–804.

    CAS  PubMed  Google Scholar 

  378. Schulte D, Furukawa T, Peters MA, Kozak CA, Cepko CL. Misexpression of the Emx-related homeobox genes cVax and mVax2 ventralizes the retina and perturbs the retinotectal map. Neuron. 1999;24(3):541–53.

    CAS  PubMed  Google Scholar 

  379. Furukawa K, Sato T, Katsuno T, Nakagawa T, Noguchi Y, Tokumasa A, et al. Smad3 contributes to positioning of proliferating cells in colonic crypts by inducing EphB receptor protein expression. Biochem Biophys Res Commun. 2011;405(4):521–6.

    CAS  PubMed  Google Scholar 

  380. Litterst C, Georgakopoulos A, Shioi J, Ghersi E, Wisniewski T, Wang R, et al. Ligand binding and calcium influx induce distinct ectodomain/gamma-secretase-processing pathways of EphB2 receptor. J Biol Chem. 2007;282(22):16155–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  381. Xu J, Litterst C, Georgakopoulos A, Zaganas I, Robakis NK. Peptide EphB2/CTF2 generated by the gamma-secretase processing of EphB2 receptor promotes tyrosine phosphorylation and cell surface localization of N-methyl-D-aspartate receptors. J Biol Chem. 2009;284(40):27220–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  382. Eriksson O, Ramstrom M, Hornaeus K, Bergquist J, Mokhtari D, Siegbahn A. The Eph tyrosine kinase receptors EphB2 and EphA2 are novel proteolytic substrates of tissue factor/coagulation factor VIIa. J Biol Chem. 2014;289:32379–91.

    CAS  PubMed  Google Scholar 

  383. Himanen JP, Henkemeyer M, Nikolov DB. Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2. Nature. 1998;396(6710):486–91.

    CAS  PubMed  Google Scholar 

  384. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell. 2001;106(6):745–57.

    CAS  PubMed  Google Scholar 

  385. Thanos CD, Faham S, Goodwill KE, Cascio D, Phillips M, Bowie JU. Monomeric structure of the human EphB2 sterile alpha motif domain. J Biol Chem. 1999;274(52):37301–6.

    CAS  PubMed  Google Scholar 

  386. Thanos CD, Goodwill KE, Bowie JU. Oligomeric structure of the human EphB2 receptor SAM domain. Science. 1999;283(5403):833–6.

    CAS  PubMed  Google Scholar 

  387. Zisch AH, Pazzagli C, Freeman AL, Schneller M, Hadman M, Smith JW, et al. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene. 2000;19(2):177–87.

    CAS  PubMed  Google Scholar 

  388. Wiesner S, Wybenga-Groot LE, Warner N, Lin H, Pawson T, Forman-Kay JD, et al. A change in conformational dynamics underlies the activation of Eph receptor tyrosine kinases. EMBO J. 2006;25(19):4686–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  389. Catchpole T, Henkemeyer M. EphB2 tyrosine kinase-dependent forward signaling in migration of neuronal progenitors that populate and form a distinct region of the dentate niche. J Neurosci. 2011;31(32):11472–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  390. Poliakov A, Cotrina ML, Pasini A, Wilkinson DG. Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway. J Cell Biol. 2008;183(5):933–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  391. Dail M, Richter M, Godement P, Pasquale EB. Eph receptors inactivate R-Ras through different mechanisms to achieve cell repulsion. J Cell Sci. 2006;119(Pt 7):1244–54.

    CAS  PubMed  Google Scholar 

  392. Zimmer M, Palmer A, Kohler J, Klein R. EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat Cell Biol. 2003;5(10):869–78.

    CAS  PubMed  Google Scholar 

  393. Bush JO, Soriano P. Ephrin-B1 forward signaling regulates craniofacial morphogenesis by controlling cell proliferation across Eph-ephrin boundaries. Genes Dev. 2010;24(18):2068–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  394. Dodelet VC, Pazzagli C, Zisch AH, Hauser CA, Pasquale EB. A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A. J Biol Chem. 1999;274(45):31941–6.

    CAS  PubMed  Google Scholar 

  395. Nakada M, Niska JA, Tran NL, McDonough WS, Berens ME. EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. Am J Pathol. 2005;167(2):565–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  396. Zou JX, Wang B, Kalo MS, Zisch AH, Pasquale EB, Ruoslahti E. An Eph receptor regulates integrin activity through R-Ras. Proc Natl Acad Sci USA. 1999;96(24):13813–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  397. Elowe S, Holland SJ, Kulkarni S, Pawson T. Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol Cell Biol. 2001;21(21):7429–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  398. Genander M, Halford MM, Xu NJ, Eriksson M, Yu Z, Qiu Z, et al. Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell. 2009;139(4):679–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  399. Pasquale EB. Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 2005;6(6):462–75.

    CAS  PubMed  Google Scholar 

  400. Darie CC, Deinhardt K, Zhang G, Cardasis HS, Chao MV, Neubert TA. Identifying transient protein-protein interactions in EphB2 signaling by Blue Native PAGE and Mass Spectrometry. Proteomics. 2011;11:4514–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  401. Shi Y, Pontrello CG, DeFea KA, Reichardt LF, Ethell IM. Focal adhesion kinase acts downstream of EphB receptors to maintain mature dendritic spines by regulating cofilin activity. J Neurosci. 2009;29(25):8129–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  402. Hoogenraad CC, Milstein AD, Ethell IM, Henkemeyer M, Sheng M. GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nat Neurosci. 2005;8(7):906–15.

    CAS  PubMed  Google Scholar 

  403. Tanaka M, Kamo T, Ota S, Sugimura H. Association of Dishevelled with Eph tyrosine kinase receptor and ephrin mediates cell repulsion. EMBO J. 2003;22(4):847–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  404. Marston DJ, Dickinson S, Nobes CD. Rac-dependent trans-endocytosis of ephrinBs regulates Eph-ephrin contact repulsion. Nat Cell Biol. 2003;5(10):879–88.

    CAS  PubMed  Google Scholar 

  405. Altick AL, Dravis C, Bowdler T, Henkemeyer M, Mastick GS. EphB receptor tyrosine kinases control morphological development of the ventral midbrain. Mech Dev. 2005;122(4):501–12.

    CAS  PubMed  Google Scholar 

  406. Garcia-Ceca J, Jimenez E, Alfaro D, Cejalvo T, Munoz JJ, Zapata AG. Cell-autonomous role of EphB2 and EphB3 receptors in the thymic epithelial cell organization. Eur J Immunol. 2009;39(10):2916–24.

    CAS  PubMed  Google Scholar 

  407. van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell. 2009;136(5):903–12.

    PubMed  Google Scholar 

  408. Wu Q, Lind GE, Aasheim HC, Micci F, Silins I, Trope CG, et al. The EPH receptor Bs (EPHBs) promoters are unmethylated in colon and ovarian cancers. Epigenetics. 2007;2(4):237–43.

    PubMed  Google Scholar 

  409. Hock B, Bohme B, Karn T, Feller S, Rubsamen-Waigmann H, Strebhardt K. Tyrosine-614, the major autophosphorylation site of the receptor tyrosine kinase HEK2, functions as multi-docking site for SH2-domain mediated interactions. Oncogene. 1998;17(2):255–60.

    CAS  PubMed  Google Scholar 

  410. Hock B, Bohme B, Karn T, Yamamoto T, Kaibuchi K, Holtrich U, et al. PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc Natl Acad Sci USA. 1998;95(17):9779–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  411. Solanas G, Cortina C, Sevillano M, Batlle E. Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nat Cell Biol. 2011;13(9):1100–7.

    CAS  PubMed  Google Scholar 

  412. Miao H, Strebhardt K, Pasquale EB, Shen TL, Guan JL, Wang B. Inhibition of integrin-mediated cell adhesion but not directional cell migration requires catalytic activity of EphB3 receptor tyrosine kinase. Role of Rho family small GTPases. J Biol Chem. 2005;280(2):923–32.

    CAS  PubMed  Google Scholar 

  413. Maddigan A, Truitt L, Arsenault R, Freywald T, Allonby O, Dean J, et al. EphB receptors trigger Akt activation and suppress Fas receptor-induced apoptosis in malignant T lymphocytes. J Immunol. 2011;187(11):5983–94.

    CAS  PubMed  Google Scholar 

  414. Zhuang Z, Yang B, Theus MH, Sick JT, Bethea JR, Sick TJ, et al. EphrinBs regulate D-serine synthesis and release in astrocytes. J Neurosci. 2010;30(47):16015–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  415. Kamitori K, Tanaka M, Okuno-Hirasawa T, Kohsaka S. Receptor related to tyrosine kinase RYK regulates cell migration during cortical development. Biochem Biophys Res Commun. 2005;330(2):446–53.

    CAS  PubMed  Google Scholar 

  416. Risley M, Garrod D, Henkemeyer M, McLean W. EphB2 and EphB3 forward signalling are required for palate development. Mech Dev. 2009;126(3–4):230–9.

    CAS  PubMed  Google Scholar 

  417. Chrencik JE, Brooun A, Kraus ML, Recht MI, Kolatkar AR, Han GW, et al. Structural and biophysical characterization of the EphB4*ephrinB2 protein-protein interaction and receptor specificity. J Biol Chem. 2006;281(38):28185–92.

    CAS  PubMed  Google Scholar 

  418. Steinle JJ, Meininger CJ, Forough R, Wu G, Wu MH, Granger HJ. Eph B4 receptor signaling mediates endothelial cell migration and proliferation via the phosphatidylinositol 3-kinase pathway. J Biol Chem. 2002;277(46):43830–5.

    CAS  PubMed  Google Scholar 

  419. Yu J, Bulk E, Ji P, Hascher A, Tang M, Metzger R, et al. The EPHB6 receptor tyrosine kinase is a metastasis suppressor that is frequently silenced by promoter DNA hypermethylation in non-small cell lung cancer. Clin Cancer Res. 2010;16(8):2275–83.

    CAS  PubMed  Google Scholar 

  420. Matsuoka H, Obama H, Kelly ML, Matsui T, Nakamoto M. Biphasic functions of the kinase-defective Ephb6 receptor in cell adhesion and migration. J Biol Chem. 2005;280(32):29355–63.

    CAS  PubMed  Google Scholar 

  421. Freywald A, Sharfe N, Rashotte C, Grunberger T, Roifman CM. The EphB6 receptor inhibits JNK activation in T lymphocytes and modulates T cell receptor-mediated responses. J Biol Chem. 2003;278(12):10150–6.

    CAS  PubMed  Google Scholar 

  422. Allonby O, El Zawily AM, Freywald T, Mousseau DD, Chlan J, Anderson D, et al. Ligand stimulation induces clathrin- and Rab5-dependent downregulation of the kinase-dead EphB6 receptor preceded by the disruption of EphB6-Hsp90 interaction. Cell Signal. 2014;26(12):2645–57.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Klein .

Editor information

Editors and Affiliations

Receptor at a glance: EphA1

Receptor at a glance: EphA1

Chromosome location

Human: chromosome 7: 143,087,382–143,105,985; reverse strand

Mouse: chromosome 6: 42,308,486–42,323,267; reverse stranda

Gene size (bp)

Human: 18,604. Mouse: 14,782a

Intron/exon numbers

18 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—3,363; 5′ UTR—87; ORF—2,931; 3′UTR—345

Mouse: mRNA—3,273; 5′ UTR—58; ORF—2,934; 3′UTR—281a

Amino acid number

Human: 976. Mouse: 977b

kDa

Human: 108. Mouse: 109b

Posttranslational modifications

Tyrosine phosphorylation, N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

Ephrin-A1, −A3, −A4

Known dimerizing partners

EphA1

Pathways regulated

Inhibits Integrin-linked kinase; stimulates RhoA/ROCK

Tissues expressed

Adult: epithelial tissue elements including those found in skin, kidney, ureter, uterus, vagina [299]

Human Diseases

Risk locus for late-onset Alzheimer disease

Knockout Mouse phenotype

Highly penetrant kinky-tail phenotype due to the deformation of the most caudal tail structures, and reminiscent of the EphA2 knockout phenotype; partially penetrant failure in the process of uterovaginal canalization dependent on a pro-apoptotic mechanism [299]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

Receptor at a glance: EphA2

Chromosome location

Human: chromosome 1: 16,450,832–16,482,582; reverse strand

Mouse: chromosome 4: 140,857,155–140,885,299; forward stranda

Gene size (bp)

Human: 31,751. Mouse: 28,145a

Intron/exon numbers

17 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—3,964; 5′ UTR—155; ORF—2,931; 3′UTR—878

Mouse: mRNA—3,913; 5′ UTR—113; ORF—2,934; 3′UTR—866a

Amino acid number

Human: 976. Mouse: 977b

kDa

Human: 108. Mouse: 109b

Posttranslational modifications

Tyrosine phosphorylation, serine/threonine phosphorylation, N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

EphrinA1 (preferred ligand), −A2, −A3, −A4, −A5

Known dimerizing partners

EphA2

Pathways regulated

Activates Rac1 and RhoG; inhibits PI3K/Akt and Rho/ROCK

Tissues expressed

During early mouse development, EphA2 is expressed in rhombomere 4 of the hindbrain [310], in distal regions of limb bud mesenchyme and various fetal epithelia [311]. In the adult EphA2 is expressed at low levels in epithelial tissue; highly upregulated in malignant cellular phenotypes including metastases

Human Diseases

EphA2 is associated with age-related cortical cataract

Knockout Mouse phenotype

EphA2 null mice develop skin tumors with an increased frequency and shortened latency. Moreover, tumors in homozygous knockout mice grow faster and are twice as likely to show invasive malignant progression [239]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

Receptor at a glance: EphA3

Chromosome location

Human: chromosome 3: 89,156,674–89,531,284; forward strand

Mouse: chromosome 16: 63,543,364–63,863,984; reverse stranda

Gene size (bp)

Human: 374,611. Mouse: 320,621a

Intron/exon numbers

17 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—5,809; 5′ UTR—225; ORF—2,952; 3′ UTR—2,632

Mouse: mRNA—5,659; 5′ UTR—111; ORF—2,595; 3′ UTR—2,593a

Amino acid number

Human: 983. Mouse: 984a

kDa

Human: 110. Mouse: 110b

Posttranslational modifications

Tyrosine phosphorylation, N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

EphrinA1, −A2, −A3, −A4, −A5

Known dimerizing partners

EphA3; EphB2 [325]

Pathways regulated

Activates RhoA

Tissues expressed

Expression is highest in the brain, also detected in testis. In the developing heart, EphA3 is expressed by mesenchymal cells of the endocardial cushions

Human diseases

Defects in EphA3 may be a cause of colorectal cancer. It was also identified in a homozygous haplotype mapping screen for genes associated with autism spectrum disorders

Knockout mouse phenotype

EphA3 mutants show defects in heart development, with hypoplasia of atrioventricular endocardial cushions. ~75 % of homozygous mutants die within 48 hours after birth due to cardiac dysfunction [152]. Survivors develop normally with no indications of cardiac abnormalities. In EphA3; EphA4 double knockouts, hypaxial motor nerves are misguided into the DRGs [100], and hypaxial sensory projections are disturbed [101]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

Receptor at a glance: EphA4

Chromosome location

Human: chromosome 2: 222,282,747–222,438,922; reverse strand

Mouse: chromosome 1: 77,363,760–77,511,663; reverse stranda

Gene size (bp)

Human: 156,176. Mouse: 147,904a

Intron/exon numbers

18 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—6,346; 5′ UTR—42; ORF—2,961; 3′ UTR—3,343

Mouse: mRNA—6,328; 5′ UTR—57; ORF—2,961; 3′ UTR—3,310a

Amino acid number

Human: 986. Mouse: 986b

kDa

Human: 110. Mouse: 110b

Posttranslational modifications

Tyrosine phosphorylation, N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

ephrinA1, -A2, -A3, -A4, -A5, -B2, and -B3

Known dimerizing partners

EphA4

Pathways regulated

Activates RhoA; inhibits Rac1, Rap1, Rap2, and integrin pathway. EphA4 intracellular domain activates Rac1

Tissues expressed

Developing nervous system: hindbrain, several neuronal subpopulations in spinal cord, cortex, hippocampus, striatum, thalamus, and retina. Developing cardiovascular system: CNS endothelial cells; neural crest cells; embryonic stem cells of the inner cell mass. Adult brain: hippocampus, amygdala, adult stem cells in SVZ; spinal cord; thyroid: follicular epithelium; kidney; lung; skeletal muscle; thymus; blood vessels: smooth muscle; platelets; stem cells of hair bulge. Cancer tumors: colon carcinoma, prostate tumors, pancreatic ductal adenocarcinoma

Human diseases

Differential expression of EphA4 is associated with metastatic melanoma, transition from prostatic intraepithelial neoplasia to invasive prostate cancer, and pancreatic ductal adenocarcinoma. Implicated as disease modifier in amyotrophic lateral sclerosis

Knockout Mouse phenotype

Axon guidance: Loss of coordination of limb movement associated with disruptions of central pattern generators; corticospinal tract; thalamocortical mapping; anterior commissure; limb motor neuron projection; retinotectal projection. Proliferation of cortical progenitors: diminished cortical size. Aberrant spine morphology. Defective Schaffer-collateral LTP and LTD. Impaired amygdala LTP. Abnormal CNS vascular structure. Defective T-cell development

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

Receptor at a glance: EphA5

Chromosome location

Human: chromosome 4: 66,185,281–66,536,213; reverse strand

Mouse: chromosome 5: 84,486,816–84,846,407; reverse stranda

Gene size (bp)

Human: 350,933. Mouse: 359,592a

Intron/exon numbers

18 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—8,266; 5′ UTR—601; ORF—3,114; 3′ UTR—4,551

Mouse: mRNA—4,298; 5′ UTR—416; ORF—2,631; 3′ UTR—1,251a

Amino acid number

Human: 1,037. Mouse: 876b

kDa

Human: 115. Mouse: 97b

Posttranslational modifications

Tyrosine phosphorylation, N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

EphrinA1, −A2, −A3, −A4, −A5

Known dimerizing partners

EphA5

Pathways regulated

Activates Cdc42

Tissues expressed

Specifically expressed in the brain, with high levels in cortical neurons and cerebellar Purkinje cells. In addition, EphA5 is detected in the amygdala, medial septum, nucleus of the diagonal band, olfactory bulb, and retina. Outside the nervous system, EphA5 is expressed in pancreatic islet cells

Human diseases

 

Knockout mouse phenotype

Homozygous mutant mice are overtly normal but show defects of retinotectal mapping, with temporal axons shifted posteriorly and nasal axons anteriorly [113]. EphA5 knockouts also have altered aggressive behavior [190]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

Receptor at a glance: EphA6

Chromosome location

Human: chromosome 3: 96,533,425–97,471,304; forward strand

Mouse: chromosome 16: 59,653,309–60,605,357; reverse stranda

Gene size (bp)

Human: 937,880. Mouse: 952,049a

Intron/exon numbers

18 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—3,971; 5′ UTR—38; ORF—3,393; 3′ UTR—540

Mouse: mRNA—3,643; ORF—3,108; 3′ UTR—535a

Amino acid number

Human: 1035. Mouse: 1035b

kDa

Human: 116. Mouse: 116b

Posttranslational modifications

Tyrosine phosphorylationc, N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

EphrinA1, −A2, −A3, −A4, −A5

Known dimerizing partners

EphA6

Pathways regulated

No signaling pathways known

Tissues expressed

During mouse development EphA6 is expressed in the accessory olfactory bulb (AOB), the site of axonal projections from the vomeronasal organ sensory neurons [139], and in retinal ganglion cells [107]. In adult mice, EphA6 is expressed predominantly in neurons in various neuronal populations [345]

Human diseases

 

Knockout Mouse phenotype

Behavioral deficits specifically in tests of learning and memory [189]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)
  3. cPhosphosite (http://www.phosphosite.org)

Receptor at a glance: EphA7

Chromosome location

Human: chromosome 6: 93,949,738-94,129,265; reverse strand

Mouse: chromosome 4: 28,740,281-28,894,649; forward stranda

Gene size (bp)

Human: 179,507. Mouse: 154,369a

Intron/exon numbers

17 exonsa

mRNA size (5′, ORF, 3′)

Human full-length isoform: mRNA—6,588; 5′ UTR—185, ORF—2,997; 3′ UTR—3406

Mouse full-length isoform: mRNA, 6,746; 5′ UTR—253; ORF—2,997; 3′ UTR—3,496a

Amino acid number

Human: full-length isoform—998; truncated isoform—450

Mouse: full-length isoform—998; truncated isoforms—610 and 626b

kDa

Human: full-length isoform—112; truncated isoform—51. Mouse: full-length isoform—112; truncated isoforms—68 and 70b

Posttranslational modifications

Tyrosine phosphorylation, N-glycosylationb

Domains

Full-length isoform: N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif. The truncated transmembrane mouse isoforms lack the kinase domain as well as the SAM domain and PDZ-binding motif. The secreted human isoform lacks the FN2 and all following domains

Ligands

EphrinA1, −A2, −A3, −A4, −A5

Known dimerizing partners

EphA7; EphA2 (shown for the secreted isoform of human EphA7) [287]

Pathways regulated

Activates caspase 3-dependent apoptosis; activates ERK

Tissues expressed

Widely expressed in the embryo. In adult, expression restricted to hippocampus, testis, and spleen. EphA7 truncated isoform is expressed in lymphoma and lung cancer

Human Diseases

Knockout Mouse phenotype

Most of the mutants are viable and fertile and show no gross abnormalities. Retinotectal mapping defects were observed, with nasal axons forming ectopic termination zones in the anterior SC [120]. Cortical size is increased due to reduced apoptosis of progenitor cells, and 10 percent of the embryos display exencephalic overgrowth of forebrain tissues [52]. Some homozygous mutants display anencephaly, possibly due to defects of neural tube closure [41]. Mutants also exhibit increased proliferation of neural progenitor cells in the lateral ventricle wall of the adult brain [244]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

Receptor at a glance: EphA8

Chromosome location

Human: Chromosome 1: 22,890,057-22,930,087 forward strand

Mouse: Chromosome 4: 136,485,334-136,512,731 reverse stranda

Gene size (bp)

Human: 40,031. Mouse: 27,398a

Intron/exon numbers

17 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—4,943; 5′ UTR—72; ORF—3,018; 3′ UTR—1,853

Mouse: mRNA—4,713; 5′ UTR—69; ORF −3,015; 3′ UTR—1,629a

Amino acid number

Human: 1,005. Mouse: 1,004b

kDa

Human: 111. Mouse: 111b

Posttranslational modifications

Tyrosine phosphorylation, N-glycosylation, ubiquitinationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

EphrinA2, −A3, −A5

Known dimerizing partners

EphA8

Pathways regulated

Activates MAPK, Rac, p100γ PI3-kinase, and integrin pathways

Tissues expressed

Specifically expressed in the central nervous system. First detected at E10.5 with high levels near the midline region of the tectum and to a lower extent in discrete regions of hindbrain, in the dorsal horn of the spinal cord, and in the naso-lacrimal groove. The expression decreases at E12.5 and is barely detectable at E17.5. Not detected at postnatal stages

Human Diseases

 

Knockout Mouse phenotype

Mice are viable and fertile, and mostly normal, but exhibit a defect in midline guidance of commissural fibers connecting the superior colliculus with the contralateral inferior colliculus, which misproject into the ipsilateral spinal cord [77]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

Receptor at a glance: EphA10

Chromosome location

Human: chromosome 1: 38,179,552-38,230,805; reverse strand

Mouse: chromosome 4: 124,558,143-124,595,044; forward stranda

Gene size (bp)

Human: 51,254. Mouse: 36,902a

Intron/exon numbers

17 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—5,425; 5′ UTR—no information; ORF—3,027; 3′ UTR—2,398

Mouse: no informationa

Amino acid number

Human: 1,008. Mouse: 1,007b

kDa

Human: 110b. Mouse: 109b

Posttranslational modifications

N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain (lacking in one isoform), PDZ-binding motif

Ligands

EphrinA1, −A2, −A3, −A4, −A5

Known dimerizing partners

No information

Pathways regulated

No information

Tissues expressed

Testis

Human Diseases

No information

Knockout Mouse phenotype

No information

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

Receptor at a glance: EphB1

Chromosome location

Human: chromosome 3: 134,514,104-134,979,309; forward strand

Mouse: chromosome 9: 101,824,458-102,257,023; reverse stranda

Gene size (bp)

Human: 465,206. Mouse: 432,566a

Intron/exon numbers

16 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—4,672; 5′UTR—370; ORF—2,955; 3′UTR—1,347

Mouse: mRNA—4,667; 5′UTR—354; ORF—2,955; 3′UTR—1358a

Amino acid number

Human: 984. Mouse: 984b

kDa

Human: 110 Mouse: 110b

Posttranslational modifications

Phosphorylation, N-glycosylation, ubiquitinationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

EphrinB1, −B2, −B3

Known dimerizing partners

EphB1, EphB6 [373]

Pathways regulated

MAPK/ERK, c-Jun, αvβ3 and α5β1 integrin

Tissues expressed

Preferentially expressed in the brain

Human diseases

Implemented in different cancers

Knockout Mouse phenotype

Reduction of the ipsilateral retinotectal projection [130]. Reduced neural progenitors in the hippocampus [248]. EphB1; EphB2; EphB3-triple knockout display reduced spine density in the hippocampus [169]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

Receptor at a glance: EphB2

Chromosome location

Human: chromosome 1: 23,037,458-23,241,818; forward strand

Mouse: chromosome 4: 136,203,454-136,391,903; reverse stranda

Gene size (bp)

Human: 204,361. Mouse: 188,450a

Intron/exon numbers

Human: 17 exons. Mouse: 16 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—4,641; 5′ UTR—18; ORF—3,168; 3′ UTR—1,455

Mouse: mRNA—4,804; 5′ UTR—126; ORF—2,964; 3′UTR—1,714a

Amino acid number

Human: 1,055. Mouse: 994b

kDa

Human: 117, Mouse: 111b

Posttranslational modifications

Tyrosine phosphorylation, possibly serine/threonine phosphorylationc, N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

ephrinB1, −B2, −B3, −A5, Reelin

Known dimerizing partners

EphB2, EphA3[325]

Pathways regulated

p110-PI3K, Rap1, RhoA, Rac1, Cdc42, Erk, ROCK-LIMK1-cofilin

Tissues expressed

Endothelial cells in the vascular system, epithelium of intestinal colonic crypt, thymus. Nervous system: ventral midbrain, diencephalon, developing hindbrain, amygdala, cerebellum, subventricular zone walls, retinotectal system, motor neurons. Neural crest cells, inner ear epithelium, skeletal muscles

Human Diseases

Colorectal cancer, breast cancer, Alzheimer’s Disease, anxiety

Knockout Mouse phenotype

Defects in ventral midbrain development [405], axon guidance errors at the midline [71], defective development of corpus callosum, cleft palate [73], defects in synaptic functions in the hippocampus, LTP and LTD impairment [168], defective dendritic spine morphogenesis [169], vascular defects [144], defective inner ear morphogenesis and circling behavior [135], defects in the morphology of the pancreas, urorectal development [158], thymus development [406], disorganized cell sorting in the intestinal epithelium [26], plasticity of adult stem cells [250], increased proliferation of stem cells in the SVZ [245]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)
  3. cPhosphosite (http://www.phosphosite.org)

Receptor at a glance: EphB3

Chromosome location

Human: chromosome 3: 184,279,572-184,300,197; forward strand

Mouse: chromosome 16: 21,204,828-21,223,377; forward stranda

Gene size (bp)

Human: 20,626. Mouse: 18,550a

Intron/exon numbers

16 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—4,236; 5′ UTR—452; ORF—2997; 3′ UTR—787

Mouse: mRNA—4,185; 5′ UTR—415; ORF—2,982; 3′ UTR—788a

Amino acid number

Human: 998. Mouse: 993b

kDa

Human: 110. Mouse: 110b

Posttranslational modifications

Tyrosine phosphorylation, Serine/Threonine phosphorylationc, N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

ephrinB1, −B2, −B3

Known dimerizing partners

EphB3, EphB2

Pathways regulated

ADAM-10-E-cadherin, RhoA, Rac1/Cdc42, AF-6-Ras GTPase/Disheveled-Daam1, Fyn/Src-Crk-rasGAP-Ras GTPase, p53-cell proliferation, Akt-cell survival, PICK1-PKC-α-D-serine synthesis

Tissues expressed

Developing hindbrain and ventral midbrain [405], basal nuclei in the striatum, stem cells in the SVZ, retinal ganglion cells during development, Paneth cells and stem cells in the small and large intestine, pharynx, salivary glands, thymus, neural crest cells, inner ear efferent fibers, developing skeletal elements, secondary palate, pancreatic epithelium, macrophages, vestibular epithelium

Human Diseases

Colorectal cancer, prostate cancer, ovarian cancer

Knockout Mouse phenotype

Midline guidance errors [74], proliferation defects of the adult stem cells in the SVZ [247], vascular defects[144], skeletal abnormalities[27], cell migration in the intestinal epithelium, cleft palate [416], defective pancreatic branching [159], disturbed morphogenesis and regeneration of the intestinal epithelium [26, 228, 411], defective thymus development [406], affected development of the urogenital system [158]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)
  3. cPhosphosite (http://www.phosphosite.org)

Receptor at a glance: EphB4

Chromosome location

Human: chromosome 7: 100,400,187-100,425,121; reverse strand

Mouse: chromosome 5: 137,791,337-137,819,897; forward stranda

Gene size (bp)

Human: 24,935. Mouse: 28,561a

Intron/exon numbers

17 exonsa

mRNA size (5′, ORF, 3′)

Human: mRNA—4,329; 5′ UTR—469; ORF—2,964; 3′ UTR—896

Mouse: mRNA—4,340; 5′ UTR—489; ORF—2,964; 3′ UTR—887a

Amino acid number

Human: 987. Mouse: 987b

kDa

Human: 108. Mouse: 109b

Posttranslational

modifications

Tyrosine phosphorylation, N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

All ephrinBs, but ephrinB2 is preferred

Known dimerizing partners

EphB4, EphB6 [258]

Pathways regulated

PI3K/Akt, Abl/Crk, RhoA, Cdc42, Rac1

Tissues expressed

Placenta, kidney, liver, lung, breast, pancreas, skeletal and heart muscle, lymph vessels, venous epithelium. Low levels in fetal brain, not expressed in adult brain

Human Diseases

Colorectal cancer, breast cancer

Knockout Mouse phenotype

Defects in angiogenesis, leading to embryonic lethality [141]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

Receptor at a glance: EphB6

Chromosome location

Human: chromosome 7: 142,552,792-142,568,847; forward strand

Mouse: chromosome 6: 41,555,481-41,570,508; forward stranda

Gene size (bp)

Human: 16,056. Mouse: 15,028a

Intron/exon numbers

Human: 20. Mouse: 18a

mRNA size (5′, ORF, 3′)

Human: mRNA—4,043; 5′UTR—787; ORF—3,066; 3′UTR—190

Mouse: mRNA—3,762; 5′UTR—512; ORF—3,045; 3′UTR—205a

Amino acid number

Human: 1,021. Mouse: 1,014b

kDa

Human: 111. Mouse: 110b

Posttranslational modifications

Tyrosine phosphorylation, N-glycosylationb

Domains

N-terminal ligand-binding domain (LBD), cysteine-rich region, two fibronectin type III domains (FN1 and FN2), single transmembrane helix, juxtamembrane region, inactive tyrosine kinase domain, sterile-α motif (SAM) domain, PDZ-binding motif

Ligands

ephrinB1, −B2

Known dimerizing partners

EphB6, EphB1, EphB4 [258, 373]

Pathways regulated

Activates c-Cbl/Abl pathway, inhibits JNK pathway

Tissues expressed

Brain, noninvasive breast carcinoma cell lines, pancreas

Human Diseases

Non-small cell lung cancer

Knockout Mouse phenotype

Compromised T-cell function, including proliferation and secretion, and reduced severity of experimental autoimmune encephalitis (EAE) when stimulated by MOG33–55 [219]

  1. aEnsembl (http://www.ensembl.org)
  2. bUniProt (http://www.uniprot.org)

5.1.1 Notes

1. Ensembl (http://www.ensembl.org)

2. UniProt (http://www.uniprot.org)

3. Phosphosite (http://www.phosphosite.org)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gaitanos, T., Dudanova, I., Sakkou, M., Klein, R., Paixão, S. (2015). The Eph Receptor Family. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Family and Subfamilies. Springer, Cham. https://doi.org/10.1007/978-3-319-11888-8_5

Download citation

Publish with us

Policies and ethics