Skip to main content

Role of Flow Cytometry in Plasma Cell Neoplasms

  • Chapter
  • First Online:
Plasma Cell Neoplasms

Abstract

Plasma cell neoplasms (PCN) are a heterogeneous group of disorders with a spectrum of clinical presentations from asymptomatic monoclonal gammopathy of undetermined significance (MGUS) to smoldering multiple myeloma to symptomatic multiple myeloma (MM). Other less common categories of PCN include AL amyloidosis, POEMS syndrome, and plasma cell leukemia. Typically, the gold standard for diagnosis has been to correlate morphologic assessment with clinical information (hypercalcemia, renal failure, anemia, and lytic bone lesions) and serologic data, including protein and urine electrophoresis with immunofixation, along with serum-free light chain assay data. As technology has improved, especially monoclonal antibody production and instrumentation, multicolor flow cytometry has become an important tool to demonstrate that the plasma cells present in a bone marrow/tissue/fluid specimen are clonal or immunophenotypically abnormal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cherian S, Wood, B. Flow cytometry in evaluation of hematopoietic neoplasms. Northfield: CAP; 2012.

    Google Scholar 

  2. Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008;111(8):3941–67.

    Article  CAS  PubMed  Google Scholar 

  3. Swerdlow SH, Campo E, Harris NL, Jaffe ES. The International Agency for Research on Cancer (IARC), “WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue,” 4th Edition. World Health Organiza-tion, Lyon, 2008.

    Google Scholar 

  4. Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H, et al. Report of the European myeloma network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica. 2008;93(3):431–8.

    Article  PubMed  Google Scholar 

  5. Johnsen HE, Bogsted M, Klausen TW, Gimsing P, Schmitz A, Kjaersgaard E, et al. Multiparametric flow cytometry profiling of neoplastic plasma cells in multiple myeloma. Cytometry B Clin Cytom. 2010;78(5):338–47.

    Article  PubMed  Google Scholar 

  6. Bataille R, Jego G, Robillard N, Barille-Nion S, Harousseau JL, Moreau P, et al. The phenotype of normal, reactive and malignant plasma cells. Identification of "many and multiple myelomas" and of new targets for myeloma therapy. Haematologica. 2006;91(9):1234–40.

    CAS  PubMed  Google Scholar 

  7. Cannizzo E, Carulli G, Del Vecchio L, Ottaviano V, Bellio E, Zenari E, et al. The role of CD19 and CD27 in the diagnosis of multiple myeloma by flow cytometry: a new statistical model. Am J Clin Pathol. 2012;137(3):377–86.

    Article  PubMed  Google Scholar 

  8. Paiva B, Gutierrez NC, Chen X, Vidriales MB, Montalban MA, Rosinol L, et al. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients. Leukemia. 2012;26(8):1862–9.

    Article  CAS  PubMed  Google Scholar 

  9. Atanackovic D, Panse J, Hildebrandt Y, Jadczak A, Kobold S, Cao Y, et al. Surface molecule CD229 as a novel target for the diagnosis and treatment of multiple myeloma. Haematologica. 2011;96(10):1512–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lee C, Guinn BA, Brooks SE, Richardson D, Orchard K. CD66a (CEACAM1) is the only CD66 variant expressed on the surface of plasma cells in multiple myeloma: a refined target for radiotherapy trials? Br J Haematol. 2010;149(5):795–6.

    Article  PubMed  Google Scholar 

  11. Paiva B, Almeida J, Perez-Andres M, Mateo G, Lopez A, Rasillo A, et al. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytometry B Clin Cytom. 2010;78(4):239–52.

    PubMed  Google Scholar 

  12. Pedreira CE, Costa ES, Barrena S, Lecrevisse Q, Almeida J, van Dongen JJ, et al. Generation of flow cytometry data files with a potentially infinite number of dimensions. Cytometry A J Int Soc Anal Cytol. 2008;73(9):834–46.

    Article  Google Scholar 

  13. Robillard N, Bene MC, Moreau P, Wuilleme S. A single-tube multiparameter seven-colour flow cytometry strategy for the detection of malignant plasma cells in multiple myeloma. Blood Cancer J. 2013;3:e134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lin P, Owens R, Tricot G, Wilson CS. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol. 2004;121(4):482–8.

    Article  PubMed  Google Scholar 

  15. Chillemi A, Zaccarello G, Quarona V, Lazzaretti M, Martella E, Giuliani N, et al. CD38 and bone marrow microenvironment. Front Biosci. 2014;19:152–62.

    Article  CAS  Google Scholar 

  16. Ocio EM, Richardson PG, Rajkumar SV, Palumbo A, Mateos MV, Orlowski R, et al. New drugs and novel mechanisms of action in multiple myeloma in 2013: a report from the International Myeloma Working Group (IMWG). Leukemia. 2014;28(3):525–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Matarraz S, Paiva B, Diez-Campelo M, Barrena S, Jara-Acevedo M, Gutierrez ML, et al. Immunophenotypic alterations of bone marrow myeloid cell compartments in multiple myeloma patients predict for myelodysplasia-associated cytogenetic alterations. Leukemia. 2014;28(8):1747–50.

    Article  CAS  PubMed  Google Scholar 

  18. Gonsalves WI, Rajkumar SV, Gupta V, Morice WG, Timm MM, Singh PP, et al. Quantification of clonal circulating plasma cells in newly diagnosed multiple myeloma: implications for redefining high-risk myeloma. Leukemia. 2014;28(10):2060–5

    Article  CAS  PubMed  Google Scholar 

  19. Kumar S, Kimlinger T, Morice W. Immunophenotyping in multiple myeloma and related plasma cell disorders. Best Pract Res Clin Haematol. 2010;23(3):433–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Paiva B, Vidriales MB, Mateo G, Perez JJ, Montalban MA, Sureda A, et al. The persistence of immunophenotypically normal residual bone marrow plasma cells at diagnosis identifies a good prognostic subgroup of symptomatic multiple myeloma patients. Blood. 2009;114(20):4369–72.

    Article  CAS  PubMed  Google Scholar 

  21. Perez-Persona E, Vidriales MB, Mateo G, Garcia-Sanz R, Mateos MV, de Coca AG, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110(7):2586–92.

    Article  CAS  PubMed  Google Scholar 

  22. Paiva B, Vidriales MB, Perez JJ, Mateo G, Montalban MA, Mateos MV, et al. Multiparameter flow cytometry quantification of bone marrow plasma cells at diagnosis provides more prognostic information than morphological assessment in myeloma patients. Haematologica. 2009;94(11):1599–602.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kumar S, Rajkumar SV, Kimlinger T, Greipp PR, Witzig TE. CD45 expression by bone marrow plasma cells in multiple myeloma: clinical and biological correlations. Leukemia. 2005;19(8):1466–70.

    Article  CAS  PubMed  Google Scholar 

  24. Mateo G, Montalban MA, Vidriales MB, Lahuerta JJ, Mateos MV, Gutierrez N, et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol. 2008;26(16):2737–44.

    Article  PubMed  Google Scholar 

  25. Ngo NT, Brodie C, Giles C, Horncastle D, Klammer M, Lampert IA, et al. The significance of tumour cell immunophenotype in myeloma and its impact on clinical outcome. J Clin Pathol. 2009;62(11):1009–15.

    Article  PubMed  Google Scholar 

  26. Tinguely M, Jenni B, Reineke T, Korol D, Kofler A, Rousson V, et al. Chromosomal translocations t(4;14), t(11;14) and proliferation rate stratify patients with mature plasma cell myelomas into groups with different survival probabilities: a molecular epidemiologic study on tissue microarrays. Am J Surg Pathol. 2007;31(5):690–6.

    Article  PubMed  Google Scholar 

  27. Cook JR, Hsi ED, Worley S, Tubbs RR, Hussein M. Immunohistochemical analysis identifies two cyclin D1 + subsets of plasma cell myeloma, each associated with favorable survival. Am J Clin Pathol. 2006;125(4):615–24.

    Article  CAS  PubMed  Google Scholar 

  28. Ely SA, Knowles DM. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation. Am J Pathol. 2002;160(4):1293–9.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K, et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood. 2007;109(4):1692–700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Paiva B, Gutierrez NC, Rosinol L, Vidriales MB, Montalban MA, Martinez-Lopez J, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood. 2012;119(3):687–91.

    Article  CAS  PubMed  Google Scholar 

  31. Paiva B, Vidriales MB, Rosinol L, Martinez-Lopez J, Mateos MV, Ocio EM, et al. A multiparameter flow cytometry immunophenotypic algorithm for the identification of newly diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control. Leukemia. 2013;27(10):2056–61.

    Article  CAS  PubMed  Google Scholar 

  32. Rajkumar SV, Gahrton G, Bergsagel PL. Approach to the treatment of multiple myeloma: a clash of philosophies. Blood. 2011;118(12):3205–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the medical research council myeloma IX study. J Clin Oncol. 2013;31(20):2540–7.

    Article  PubMed  Google Scholar 

  34. Palumbo A, Bringhen S, Larocca A, Rossi D, Di Raimondo F, Magarotto V, et al. Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: updated follow-up and improved survival. J Clin Oncol. 2014;32(7):634–40.

    Article  CAS  PubMed  Google Scholar 

  35. Dytfeld D, Jasielec J, Griffith KA, Lebovic D, Vesole DH, Jagannath S, et al. Carfilzomib, lenalidomide, and low-dose dexamethasone in elderly patients with newly diagnosed multiple myeloma. Haematologica. 2014.

    Google Scholar 

  36. Kumar SK, Rajkumar SV. The current status of minimal residual disease assessment in myeloma. Leukemia. 2014;28(2):239–40.

    Article  CAS  PubMed  Google Scholar 

  37. Puig N, Sarasquete ME, Balanzategui A, Martinez J, Paiva B, Garcia H, et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014;28(2):391–7.

    Article  CAS  PubMed  Google Scholar 

  38. Gupta R, Bhaskar A, Kumar L, Sharma A, Jain P. Flow cytometric immunophenotyping and minimal residual disease analysis in multiple myeloma. Am J Clin Pathol. 2009;132(5):728–32.

    Article  PubMed  Google Scholar 

  39. Cao W, Goolsby CL, Nelson BP, Singhal S, Mehta J, Peterson LC. Instability of immunophenotype in plasma cell myeloma. Am J Clin Pathol. 2008;129(6):926–33.

    Article  PubMed  Google Scholar 

  40. Bataille R, Robillard N, Pellat-Deceunynck C, Amiot M. A cellular model for myeloma cell growth and maturation based on an intraclonal CD45 hierarchy. Immunol Rev. 2003;194:105–11.

    Article  CAS  PubMed  Google Scholar 

  41. Morice WG, Hanson CA, Kumar S, Frederick LA, Lesnick CE, Greipp PR. Novel multiparameter flow cytometry sensitively detects phenotypically distinct plasma cell subsets in plasma cell proliferative disorders. Leukemia. 2007;21(9):2043–6.

    Article  CAS  PubMed  Google Scholar 

  42. Roschewski M, Stetler-Stevenson M, Yuan C, Mailankody S, Korde N, Landgren O. Minimal residual disease: what are the minimum requirements? J Clin Oncol. 2014;32(5):475–6.

    Article  PubMed  Google Scholar 

  43. Hart AJ, Jagasia MH, Kim AS, Mosse CA, Savani BN, Kassim A. Minimal residual disease in myeloma: are we there yet? Biol blood Marrow Transplant. 2012;18(12):1790–9.

    Google Scholar 

  44. Paiva B, Martinez-Lopez J, Vidriales MB, Mateos MV, Montalban MA, Fernandez-Redondo E, et al. Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol. 2011;29(12):1627–33.

    Article  CAS  PubMed  Google Scholar 

  45. Martinez-Lopez J, Lahuerta JJ, Pepin F, Gonzalez M, Barrio S, Ayala R, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20):3073–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Au WY, Lam CC, Lie AK, Pang A, Kwong YL. T-cell large granular lymphocyte leukemia of donor origin after allogeneic bone marrow transplantation. Am J Clin Pathol. 2003;120(4):626–30.

    Article  PubMed  Google Scholar 

  47. Mohty M, Faucher C, Gaugler B, Vey N, Sainty D, Arnoulet C, et al. Large granular lymphocytes (LGL) following non-myeloablative allogeneic bone marrow transplantation: a case report. Bone Marrow Transplant. 2001;28(12):1157–60.

    Article  CAS  PubMed  Google Scholar 

  48. Mohty M, Faucher C, Vey N, Chabannon C, Sainty D, Arnoulet C, et al. Features of large granular lymphocytes (LGL) expansion following allogeneic stem cell transplantation: a long-term analysis. Leukemia. 2002;16(10):2129–33.

    Article  CAS  PubMed  Google Scholar 

  49. Wolniak KL, Goolsby CL, Chen YH, Chenn A, Singhal S, JayeshMehta, et al. Expansion of a clonal CD8+ CD57+ large granular lymphocyte population after autologous stem cell transplant in multiple myeloma. Am J Clin Pathol. 2013;139(2):231–41.

    Article  CAS  PubMed  Google Scholar 

  50. Boylan KL, Gosse MA, Staggs SE, Janz S, Grindle S, Kansas GS, et al. A transgenic mouse model of plasma cell malignancy shows phenotypic, cytogenetic, and gene expression heterogeneity similar to human multiple myeloma. Cancer Res. 2007;67(9):4069–78.

    Article  CAS  PubMed  Google Scholar 

  51. Cheung WC, Kim JS, Linden M, Peng L, Van Ness B, Polakiewicz RD, et al. Novel targeted deregulation of c-Myc cooperates with Bcl-X(L) to cause plasma cell neoplasms in mice. J Clin Invest. 2004;113(12):1763–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Linden M, Kirchhof N, Carlson C, Van Ness B. Targeted overexpression of Bcl-XL in B-lymphoid cells results in lymphoproliferative disease and plasma cell malignancies. Blood. 2004;103(7):2779–86.

    Article  CAS  PubMed  Google Scholar 

  53. Chevrier S, Genton C, Kallies A, Karnowski A, Otten LA, Malissen B, et al. CD93 is required for maintenance of antibody secretion and persistence of plasma cells in the bone marrow niche. Proc Natl Acad Sci U S A. 2009;106(10):3895–900.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Segel GB, Woodlock TJ, Xu J, Li L, Felgar RE, Ryan DH, et al. Early gene activation in chronic leukemic B lymphocytes induced toward a plasma cell phenotype. Blood Cells Mol Dis. 2003;30(3):277–87.

    Article  CAS  PubMed  Google Scholar 

  55. Rodriguez-Bayona B, Ramos-Amaya A, Perez-Venegas JJ, Rodriguez C, Brieva JA. Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients. Arthritis Res Ther. 2010;12(3):R108.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Hosomi S, Oshitani N, Kamata N, Sogawa M, Okazaki H, Tanigawa T, et al. Increased numbers of immature plasma cells in peripheral blood specifically overexpress chemokine receptor CXCR3 and CXCR4 in patients with ulcerative colitis. Clin Exp Immunol. 2011;163(2):215–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Caraux A, Klein B, Paiva B, Bret C, Schmitz A, Fuhler GM, et al. Circulating human B normal CD138 - and CD138 + plasma cells. Haematologica. 2010;95(6):1016–20.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Iqbal MS, Otsuyama K, Shamsasenjan K, Asaoku H, Mahmoud MS, Gondo T, et al. Constitutively lower expressions of CD54 on primary myeloma cells and their different localizations in bone marrow. Eur J Haematol. 2009;83(4):302–12.

    Article  CAS  PubMed  Google Scholar 

  59. Badr G, Lefevre EA, Mohany M. Thymoquinone inhibits the CXCL12-induced chemotaxis of multiple myeloma cells and increases their susceptibility to Fas-mediated apoptosis. PloS One. 2011;6(9):e23741.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113(18):4341–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Oliveira AM, Maria DA, Metzger M, Linardi C, Giorgi RR, Moura F, et al. Thalidomide treatment down-regulates SDF-1alpha and CXCR4 expression in multiple myeloma patients. Leuk Res. 2009;33(7):970–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beenu Thakral MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thakral, B., Wolniak, K., Linden, M. (2016). Role of Flow Cytometry in Plasma Cell Neoplasms. In: Linden, M., McKenna, R. (eds) Plasma Cell Neoplasms. Springer, Cham. https://doi.org/10.1007/978-3-319-10918-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10918-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10917-6

  • Online ISBN: 978-3-319-10918-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics