Skip to main content

Feasibility Study of a Future Satellite Gravity Mission Using GEO-LEO Line-of-Sight Observations

  • Conference paper
Gravity, Geoid and Height Systems

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 141))

Abstract

In this article the feasibility of gravity field determination with very high-low satellite-to-satellite tracking, as intended as part of the GETRIS (“Geodesy and Time Reference in Space”) mission concept, is investigated. For this purpose several geostationary satellites (GEOs) are positioned around the Earth. A microwave system is used to determine the relative position between satellites in low Earth orbits (LEOs) and GEOs with very high accuracy, from which the gravity field of the Earth can be estimated.This concept is simulated to retrieve the time-variable gravity field caused by temporal changes in continental hydrology. The simulation is based on simplified assumptions, taking only errors of the ranging instrument into account. The gravity field is recovered in a closed-loop environment from the simulated observations. Furthermore, the possibility of enhancing GRACE results with GEO-LEO tracking is investigated.Overall the results show that the GEO-LEO concept is very promising, since it possibly reduces some of the weaknesses of the LEO-LEO tracking concept and measures the radial component of the Earth’s gravity field. Due to the option of multi-satellite tracking, the time-variable gravity field might be observed within shorter time periods than with a single GRACE-like mission. However, more detailed simulations are required to draw final conclusions on the exact magnitude of benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bender PL, Wiese DN, Nerem RS (2008) A possible dual-GRACE mission with 90 degree and 63 degree inclination orbits. In: Proceedings of the third international symposium on formation flying, missions and technologies. ESA/ESTEC, Noordwijk (ESA SP-654, June 2008), pp 1–6. ISBN 978-92-9221-218-6

    Google Scholar 

  • Cacciapuoti L, Salomon Ch (2009) Space clocks and fundamental tests: The ACES experiment. Eur Phys J Special Topics 172:57–68

    Article  Google Scholar 

  • Douglas B, Goad CC, Morrison FF (1980) Determination of the geopotential from satellite to satellite tracking data. J Geophys Res 85(NB10):5471–5480. doi:10.1029/JB085iB10p05471

    Google Scholar 

  • Gruber T, Bamber JL, Bierkens MFP, Dobslaw H, Murböck M, Thomas M et al (2011) Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst Sci Data 3(1):19–35

    Article  Google Scholar 

  • Hess MP, Kehrer J, Kufner M, Durand S, Hejc G, Fruhauf H, et al (2011) ACES MWL status and test results. In: 2011 Joint Conference of the IEEE international frequency control and the European frequency and time forum (FCS), pp 1–8. doi:10.1109/FCS.2011.5977727

    Google Scholar 

  • Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3):849–864

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: a modern insight from FES2004. Ocean Dyn 56:394–415

    Article  Google Scholar 

  • Pail R, Mayrhofer R (2009) Satellite formations for the reduction of temporal (tidal) aliasing effects. Presented at IAG 2009, Geodesy for Planet Earth, Buenos Aires, August 31, 2009. http://www.iapg.bv.tum.de/mediadb/5505990/5505991/20090831%5FPoster%5FMISSIONSIM%5FOTIDE%5FIAG20…pdf Accessed 16 Apr 2013

  • Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophysical Research Letters EID L20314, vol 37. American Geophysical Union. doi:10.1029/2010GL044906. ISSN 0094-8276

    Google Scholar 

  • Ramillien G, Cazenava A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826

    Article  Google Scholar 

  • Savcenko R, Bosch W (2008) EOT08a-empirical ocean tide model from multi-mission satellite altimetry. Report No. 81. German Geodetic Research Institute, Munich

    Google Scholar 

  • Swenson S, Wahr J (2006), Post-processing removal of correlated errors in GRACE. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

    Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004), GRACE measurements of mass variability in the earth system. Science 305:1503–1505

    Article  Google Scholar 

  • Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean earth gravity model from GRACE. Eos Trans, AGU, 88(52), Fall Meeting Suppl., Abstract G42A-03

    Google Scholar 

  • Van Beek LPH, Bierkens MFP (2008) The Global Hydrological Model PCR-GLOBWB: Conceptualization, Parameterization and Verification. Report, Department of Physical Geography, Utrecht University, Utrecht, The Netherlands, http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf. Accessed 26 February 2013

  • Vonbun FO, Argentiero PD, Schmid PE (1978) Orbit determination accuracies using satellite-to-satellite tracking. IEEE Trans Aerospace and Electronic Syst 14(6):834–842. doi:10.1109/TAES.1978.308547

    Article  Google Scholar 

  • Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179(3):1499–1515

    Article  Google Scholar 

  • Wiese DN, Nerem RS, Lemoine FG (2012) Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites. J Geodesy 86(2):81–98

    Article  Google Scholar 

Download references

Acknowledgements

This study was inspired by the ESA project “Geodesy and Time Reference in Space” (GETRIS), contract no. 4000103328/2011/NL/WE.

We thank Dr. W. Schäfer for providing us with detailed information on technical issues, and Fig. 1 of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Schlie, J., Murböck, M., Pail, R. (2014). Feasibility Study of a Future Satellite Gravity Mission Using GEO-LEO Line-of-Sight Observations. In: Marti, U. (eds) Gravity, Geoid and Height Systems. International Association of Geodesy Symposia, vol 141. Springer, Cham. https://doi.org/10.1007/978-3-319-10837-7_16

Download citation

Publish with us

Policies and ethics