Skip to main content

Tumor Clustering Using Independent Component Analysis and Adaptive Affinity Propagation

  • Conference paper
Intelligent Computing in Bioinformatics (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8590))

Included in the following conference series:

Abstract

Tumor clustering is a powerful method in tumor subtype discovery for more accurately and reliably clinical diagnosis and prognosis. In order to further improve the performance of tumor clustering, we introduce a new tumor clustering approach based on independent component analysis (ICA) and affinity propagation (AP). Particularly, ICA is initially employed to select a subset of genes so that the effect of irrelevant or noisy genes can be reduced. The AP and its extensions, adaptive affinity propagation (adAP), are then used for tumor clustering on the selected genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. West, M.: Bayesian Factor Regression Models in the “large p, small n” Paradigm. Bayesian Statistics 7, 723–732 (2003)

    Google Scholar 

  2. Zheng, C.H.: Tumor Clustering Using Nonnegative Matrix Factorization with Gene Selection. Information Technology in Biomedicine 13, 599–607 (2009)

    Article  Google Scholar 

  3. Haeb Umbach, R., Ney, H.: Linear Discriminant Analysis for Improved Large Vocabulary Continuous Speech Recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1992, vol. 1(5), pp. 13–16 (1992)

    Google Scholar 

  4. Wang, K.: Adaptive Affinity Propagation Clustering. arXiv preprint arXiv (2008)

    Google Scholar 

  5. Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13(4), 411–430 (2000)

    Article  Google Scholar 

  6. Liebermeister, W.: Linear Modes of Gene Expression Determined by Independent Component Analysis. Bioinformatics 18(1), 51–60 (2002)

    Article  Google Scholar 

  7. Chiappetta, P., Roubaud, M.C., Torrésani, B.: Blind Source Separation and the Analysis of Microarray Data. Journal of Computational Biology 11(6), 1090–1109 (2004)

    Article  Google Scholar 

  8. Frey, B.J., Dueck, D.: Clustering by Passing Messages between Data Points. Science, 972–976 (2007)

    Google Scholar 

  9. Dudoit, S., Fridlyand, J.: A Prediction-based Resampling Method for Estimating the Number of Clusters in A Dataset. Genome Biology 3(7), 1–21 (2002)

    Article  Google Scholar 

  10. Velamuru, P.K.: Robust Clustering of Positron Emission Tomography Data. In: Joint Interfce CSNA (2005)

    Google Scholar 

  11. Ishkanian, A.S.: A Tiling Resolution DNA Microarray with Complete Coverage of the Human Genome. Nature Genetics 36(3), 299–303 (2004)

    Article  Google Scholar 

  12. Cheung, K.J.J.: Genome-wide Profiling of Follicular Lymphoma by Array Comparative Genomic Hybridization Reveals Prognostically Significant DNA Copy Number Imbalances. Blood 113(1), 137–148 (2009)

    Article  Google Scholar 

  13. Höglund, M.: Identification of Cytogenetic Subgroups and Karyotypic Pathways of Clonal Evolution in Follicular Lymphomas. Genes, Chromosomes and Cancer 39(3), 195–204 (2004)

    Article  Google Scholar 

  14. Shah, S.P.: Model-based Clustering of Array CGH Data. Bioinformatics 25(12), 30–38 (2009)

    Article  Google Scholar 

  15. Huang, D.S., Zheng, C.H.: Independent Component Analysis-based Penalized Discriminant Method for Tumor Classification using Gene Expression Data. Bioinformatics 2(15), 1855–1862 (2006)

    Article  Google Scholar 

  16. Furlanello, C.: Entropy-based Gene Ranking without Selection Bias for the Predictive Classification of Microarray Data. BMC Bioinformatics 4(1), 54 (2003)

    Article  Google Scholar 

  17. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of Discrimination Methods for the Classification of Tumors using Gene Expression Data. Journal of the American Statistical Association 97(457), 77–87 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Calò, D.G.: Variable Selection in Cell Classification Problems: A Strategy based on Independent Component Analysis, pp. 21–29. Springer (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ye, F., Xia, JF., Chong, YW., Zhang, Y., Zheng, CH. (2014). Tumor Clustering Using Independent Component Analysis and Adaptive Affinity Propagation. In: Huang, DS., Han, K., Gromiha, M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science(), vol 8590. Springer, Cham. https://doi.org/10.1007/978-3-319-09330-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09330-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09329-1

  • Online ISBN: 978-3-319-09330-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics