Skip to main content

Uric Acid, Allopurinol: The Cardio-Renal Silver Bullet?

  • Chapter
  • First Online:
Cardio-Renal Clinical Challenges

Abstract

Elevated uric acid concentration is a common laboratory finding in subjects with metabolic syndrome/obesity, hypertension, kidney failure and cardiovascular events. Uric acid is the end product of purine metabolism that circulates in the plasma at concentrations varying from 2 to 10 mg/dl or higher. Purine nucleotides are derived from both exogenous (alimentary intake, especially animal proteins) and endogenous sources (de novo molecule synthesis and nucleic acid breakdown in the liver, intestines and other tissues – muscles, kidneys and the vascular endothelium). Purine catabolism involves several intermediate products (inosine, hypoxanthine, xanthine), and as a final step, xanthine oxidase catalyzes oxidation of xanthine to uric acid. Under normal conditions, the kidneys eliminate two-thirds of the uric acid production while the biliary tree removes the remaining one-third [1]. In the kidney, uric acid is filtered by the glomerulus and subsequently reabsorbed by the proximal tubes. Normal fractional excretion of uric acid is ~10 % [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorensen LB, Levinson DJ. Origin and extrarenal elimination of uric acid in man. Nephron. 1975;14(1):7–20.

    CAS  PubMed  Google Scholar 

  2. Wright AF, Rudan I, Hastie ND, Campbell H. A ‘complexity’ of urate transporters. Kidney Int. 2010;78:446–52.

    CAS  PubMed  Google Scholar 

  3. Bellomo G. Uric acid and chronic kidney disease: a time to act? World J Nephrol. 2013;2(2):17–25.

    PubMed Central  PubMed  Google Scholar 

  4. So A, Thorens B. Uric acid transport and disease. J Clin Invest. 2010;120(6):1791–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417:447–52.

    CAS  PubMed  Google Scholar 

  6. Moriwaki Y. Effects on uric acid metabolism of the drugs except the antihyperuricemics. J Bioequiv Availab. 2014;6(1):010–7.

    Google Scholar 

  7. MyPhuong TL, Shafiu M, Mu W, Johnson RJ. SLC2A9—a fructose transporter identified as a novel uric acid transporter. Nephrol Dial Transplant. 2008;23(9):2746–9.

    Google Scholar 

  8. Dinour D, Gray NK, Ganon L, Knox AJ, Shalev H, Sela BA, Campbell S, Sawyer L, Shu X, Valsamidou E, Landau D, Wright AF, Holtzman EJ. Two novel homozygous SLC2A9 mutations cause renal hypouricemia type 2. Nephrol Dial Transplant. 2012;27(3):1035–41.

    CAS  PubMed  Google Scholar 

  9. Gustafsson D, Unwin R. The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality. BMC Nephrol. 2013;14:164.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Dinour D, Bahn A, Ganon L, Ron R, Geifman-Holtzman O, Knecht A, Gafter U, Rachamimov R, Sela BA, Burckhardt G, Holtzman EJ. URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol Dial Transplant. 2011;26(7):2175–81.

    CAS  PubMed  Google Scholar 

  11. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10):3136–41.

    PubMed  Google Scholar 

  12. Liu B, Wang T, Zhao H, Yue W, Yu H, Liu C, et al. The prevalence of hyperuricemia in China: a meta-analysis. BMC Public Health. 2011;11(1):832.

    Google Scholar 

  13. DohertyM. New insights into the epidemiology of gout. Rheumatology. 2009;48(Suppl 2):ii2–8.

    Google Scholar 

  14. Stamp LK, Chapman PT. Gout and its comorbidities: implications for therapy. Rheumatology (Oxford). 2013;52(1):34–44.

    Google Scholar 

  15. Jalal DI, Chonchol M, Chen M, Targher G. Uric acid as a target of therapy in CKD. Am J Kidney Dis. 2013;61(1):134–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Intern Med. 2005;143:499–516.

    CAS  PubMed  Google Scholar 

  17. Torres RJ, Puig JG. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis. 2007;2:48.

    PubMed Central  PubMed  Google Scholar 

  18. Brunner J, Lotschütz D. Kelley-Seegmiller syndrome. Klin Padiatr. 2008;220(1):21–3.

    CAS  PubMed  Google Scholar 

  19. Clive DM. Renal transplant-associated hyperuricemia and gout. J Am Soc Nephrol. 2000;11(5):974–9.

    CAS  PubMed  Google Scholar 

  20. Nakamura T, Nishi R, Tanaka T, Takagi K, Sakai K, Takai M, Morishima S, Yamauchi T, Ueda T. Variation of urate transport in the nephrons in subtypes of hyperuricemia. Nephron Extra. 2013;3(1):73–85.

    PubMed Central  PubMed  Google Scholar 

  21. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–97.

    Google Scholar 

  22. Puig JG, Martínez MA. Hyperuricemia, gout, and the metabolic syndrome. Curr Opin Rheumatol. 2008;20(2):187–91.

    CAS  PubMed  Google Scholar 

  23. Soltani Z, Rasheed K, Kapusta DR, Reisin E. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Curr Hypertens Rep. 2013;15(3):175–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007;57:109–15.

    PubMed  Google Scholar 

  25. Khitan Z, Kim DH. Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metab. 2013;2013:1–12.

    Google Scholar 

  26. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006;290(3):F625–31.

    CAS  PubMed  Google Scholar 

  27. Disse C, Buelow A, Boedeke R-H, Keller K-M, et al. Reduced prevalence of obesity in children with primary fructose malabsorption: a multicentre, retrospective cohort study. Pediatric Obes. 2013;8(4):255–8.

    CAS  Google Scholar 

  28. Pereira MA, Fulgoni III VL. Consumption of 100% fruit juice and risk of obesity and metabolic syndrome: findings from the national health and nutrition examination survey 1999–2004. J Am Coll Nutr. 2010;29(6):625–9.

    CAS  PubMed  Google Scholar 

  29. Johnson RJ, Nakagawa T, Sanchez-Lozada LG, Shafiu M, Sundaram S, Le M, Ishimoto T, Sautin YY, Lanaspa MA. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013;62(10):3307–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Nakagawa T, Cirillo P, Sato W, Gersch M, Sautin Y, Roncal C, Mu W, Sánchez-Lozada LG, Johnson RJ. The conundrum of hyperuricemia, metabolic syndrome, and renal disease. Intern Emerg Med. 2008;3(4):313–8.

    PubMed Central  PubMed  Google Scholar 

  31. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 2007;293(2):C584–96.

    CAS  PubMed  Google Scholar 

  32. Baldwin W, McRae S, Marek G, Wymer D, Pannu V, Baylis C, Johnson RJ, Sautin YY. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes. 2011;60(4):1258–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Li C, Hsieh MC, Chang SJ. Metabolic syndrome, diabetes, and hyperuricemia. Curr Opin Rheumatol. 2013;25(2):210–6.

    CAS  PubMed  Google Scholar 

  34. Carnethon MR, Fortmann SP, Palaniappan L, Duncan BB, Schmidt MI, Chambless LE. Risk factors for progression to incident hyperinsulinemia: the Atherosclerosis Risk in Communities Study, 1987–1998. Am J Epidemiol. 2003;158(11):1058–67.

    PubMed  Google Scholar 

  35. Krishnan E, Pandya BJ, Chung L, Hariri A, Dabbous O. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-upstudy. Am J Epidemiol. 2012;176(2):108–16.

    PubMed  Google Scholar 

  36. Niskanen L, Laaksonen DE, Lindström J, Eriksson JG, Keinänen-Kiukaanniemi S, Ilanne-Parikka P, Aunola S, Hämäläinen H, Tuomilehto J, Uusitupa M. Serum uric acid as a harbinger of metabolic outcome in subjects with impaired glucose tolerance: the Finnish Diabetes Prevention Study. Diabetes Care. 2006;29(3):709–11.

    PubMed  Google Scholar 

  37. Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, Totsuka K, Saito A, Sone H. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32(9):1737–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Sluijs I, Beulens JW, van der A DL, Spijkerman AM, Schulze MB, van der Schouw YT. Plasma uric acid is associated with increased risk of type 2 diabetes independent of diet and metabolic risk factors. J Nutr. 2013;143(1):80–5.

    CAS  PubMed  Google Scholar 

  39. Juraschek SP, McAdams-Demarco M, Miller ER, Gelber AC, Maynard JW, Pankow JS, Young H, Coresh J, Selvin E. Temporal relationship between uric acid concentration and risk of diabetes in a community-basedstudy population. Am J Epidemiol. 2014;179(6):684–91.

    PubMed  Google Scholar 

  40. Pfister R, Barnes D, Ruben R, Forouhi NG, Bochud M, Khaw KT, Wareham NJ, Langenberg C. No evidence for a causal link between uric acid and type 2 diabetes: a Mendelian randomisation approach. Diabetologia. 2011;54:2561–9.

    CAS  PubMed  Google Scholar 

  41. Taniguchi Y, Hayashi T, Tsumura K, Endo G, Fujii S, Okada K. Serum uric acid and the risk for hypertension and type 2 diabetes in Japanese men: the Osaka Health Survey. J Hypertens. 2001;19(7):1209–15.

    CAS  PubMed  Google Scholar 

  42. Zhang W, Sun K, Yang Y, Zhang H, Hu FB, et al. Plasma uric acid and hypertension in a Chinese community: prospective study and metaanalysis. Clin Chem. 2009;55:2026–34.

    CAS  PubMed  Google Scholar 

  43. Sautin YY, Johnson RJ. Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids. 2008;27(6):608–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Kang DH, Park SK, Lee IK, Johnson RJ. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production ofhuman vascular cells. J Am Soc Nephrol. 2005;16(12):3553–62.

    CAS  PubMed  Google Scholar 

  45. Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, Lan HY, Kivlighn S, Johnson RJ. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2001;38(5):1101–6.

    CAS  PubMed  Google Scholar 

  46. Kanbay M, Segal M, Afsar B, Kang DH, Rodriguez-Iturbe B, Johnson RJ. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart. 2013;99(11):759–66.

    CAS  PubMed  Google Scholar 

  47. Cannon PJ, Stason WB, Demartini FE, Sommers SC, Laragh JH. Hyperuricemia in primary and renal hypertension. N Engl J Med. 1966;275(9):457–64.

    CAS  PubMed  Google Scholar 

  48. Feig DI, Johnson RJ. Hyperuricemia in childhood primary hypertension. Hypertension. 2003;42(3):247–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300(8):924–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Soletsky B, Feig DI. Uric acid reduction rectifies prehypertension in obese adolescents. Hypertension. 2012;60(5):1148–56.

    CAS  PubMed  Google Scholar 

  51. Kanbay M, Ozkara A, Selcoki Y, et al. Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions. Int Urol Nephrol. 2007;39:1227–33.

    CAS  PubMed  Google Scholar 

  52. Johnson RJ, Sánchez-Lozada LG, Mazzali M, Feig DI, Kanbay M, Sautin YY. What are the key arguments against uric acid as a true risk factor for hypertension? Hypertension. 2013;61(5):948–51.

    CAS  PubMed  Google Scholar 

  53. Waring WS, McKnight JA, Webb DJ, Maxwell SR. Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes. 2006;55(11):3127–32.

    CAS  PubMed  Google Scholar 

  54. George J, Carr E, Davies J, Belch JJ, Struthers A. High-dose allopurinol improves endothelial function by profoundly reducing vascularoxidative stress and not by lowering uric acid. Circulation. 2006;114(23):2508–16.

    CAS  PubMed  Google Scholar 

  55. Timóteo AT, Lousinha A, Labandeiro J, Miranda F, Papoila AL, Oliveira JA, Ferreira ML, Ferreira RC. Serum uric acid: forgotten prognostic marker in acute coronary syndromes? Eur Heart J Acute Cardiovasc Care. 2013;2(1):44–52.

    PubMed Central  PubMed  Google Scholar 

  56. Bickel C, Rupprecht HJ, Blankenberg S, Rippin G, Hafner G, Daunhauer A, Hofmann KP, Meyer J. Serum uric acid as an independent predictor of mortality in patients with angiographically proven coronary artery disease. Am J Cardiol. 2002;89:12–7.

    CAS  PubMed  Google Scholar 

  57. Culleton BF, Larson MG, Kannel WB, Levy D. Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med. 1999;131:7–13.

    CAS  PubMed  Google Scholar 

  58. Strasak A, Ruttmann E, Brant L, Kelleher C, Klenk J, Concin H, et al. Serum uric acid and risk of cardiovascular mortality: a prospective long-term study of 83 683 Austrian men. Clin Chem. 2008;54:273–84.

    CAS  PubMed  Google Scholar 

  59. Palmer TM, Nordestgaard BG, Benn M, Tybjærg-Hansen A, Davey Smith G, Lawlor DA, Timpson NJ. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. BMJ. 2013 Jul 18;347:f4262.

    Google Scholar 

  60. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2010;62(2):170–80.

    Google Scholar 

  61. Wheeler JG, Juzwishin KD, Eiriksdottir G, Gudnason V, Danesh J, Wheeler JG, et al. Serum uric acid and coronary heart disease in 9,458 incident cases and 155,084 controls: prospective study and meta-analysis. PloS Med. 2005;2(3):e76.

    Google Scholar 

  62. Doehner W, von Haehling S, Anker SD. Uric acid as a prognostic marker in acute heart failure—new expectations from an old molecule. Eur J Heart Fail. 2007;9(5):437.

    CAS  PubMed  Google Scholar 

  63. Bergamini C, Cicoira M, Rossi A, Vassanelli C. Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur J Heart Fail. 2009;11(5):444–52.

    CAS  PubMed  Google Scholar 

  64. Arora S, Aukrust P, Ueland T, Broch K, Simonsen S, Gude E, Fiane AE, Geiran O, Wergeland R, Andreassen AK, Gullestad L. Elevated serum uric acid levels following heart transplantation predict all-cause and cardiac mortality. Eur J Heart Fail. 2009;11(10):1005–13.

    CAS  PubMed  Google Scholar 

  65. Elahi MM, Kong YX, Matata BM. Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev. 2009;2(5):259–69.

    PubMed Central  PubMed  Google Scholar 

  66. Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, Wamsley A, Sheikh-Hamad D, Lan HY, Feng L, Johnson RJ. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41(6):1287–93.

    CAS  PubMed  Google Scholar 

  67. Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt DV, Reaveley DA, Schuler G, Coats AJ, Anker SD, Hambrecht R. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation. 2002;105:2619–24.

    CAS  PubMed  Google Scholar 

  68. Struthers AD, Donnan PT, Lindsay P, McNaughton D, Broomhall J, MacDonald TM. Effect of allopurinol on mortality and hospitalisations in chronic heart failure: a retrospective cohort study. Heart. 2002;87:229–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Gavin AD, Struthers AD. Allopurinol reduces B-type natriuretic peptide concentrations and haemoglobin but does not alter exercise capacity in chronic heart failure. Heart. 2005;91(6):749–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Doehner W, von Haehling S, Anker SD. Uric acid in CHF: marker or player in a metabolic disease? Int J Cardiol. 2007;115:156–8.

    PubMed  Google Scholar 

  71. Cingolani HE, Plastino JA, Escudero EM, Mangal B, Brown J, Perez NG. The effect of xanthine oxidase inhibition upon ejection fraction in heart failure patients: La Plata study. J Card Fail. 2006;12:491–8.

    CAS  PubMed  Google Scholar 

  72. Hare JM, Mangal B, Brown J, Fisher Jr C, Freudenberger R, Colucci WS, Mann DL, Liu P, Givertz MM, Schwarz RP, OPT-CHF Investigators. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol. 2008;51(24):2301–9.

    CAS  PubMed  Google Scholar 

  73. Ogino K, Kato M, Furuse Y, Kinugasa Y, Ishida K, Osaki S, Kinugawa T, Igawa O, Hisatome I, Shigemasa C, Anker SD, Doehner W. Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study. Circ Heart Fail. 2010;3(1):73–81.

    CAS  PubMed  Google Scholar 

  74. Khalil MI, Islam MJ, Ullah MA, Khan RK, Munira S, Haque MA, Mamun MA, Islam MT, Khan MH. Association of serum uric acid with ischemic stroke. Mymensingh Med J. 2013;22(2):325–30.

    CAS  PubMed  Google Scholar 

  75. Skak-Nielsen H, Torp-Pedersen C, Finer N, Caterson ID, Van Gaal L, James WP, Maggioni AP, Sharma AM, Coutinho W, Andersson C. Uric acid as a risk factor for cardiovascular disease and mortality in overweight/obese individuals. PLoS One. 2013;8(3):e59121.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Waring WS. Uric acid: an important antioxidant in acute ischaemic stroke. QJM. 2002;95(10):691–3.

    CAS  PubMed  Google Scholar 

  77. Pello S, Boland T, Dechant V, Patel S, Tsao-Wei Liang, Mandel S. Uric Acid’s Relationship with Stroke and Parkinson’s Disease: A Review. Practical Neurology 2009; 21-23

    Google Scholar 

  78. Storhaug HM, Norvik JV, Toft I, Eriksen BO, Løchen M-L, Zykova S, Solbu M, White S, Chadban S, Jenssen T. Uric acid is a risk factor for ischemic stroke and all-cause mortality in the general population: a gender specific analysis from The Tromsø Study. BMC Cardiovasc Disord. 2013;13:115.

    PubMed Central  PubMed  Google Scholar 

  79. Chamorro A, Obach V, Cervera A, Revilla M, Deulofeu R, Aponte JH. Prognostic significance of uric acid serum concentration in patients with acute ischaemic stroke. Stroke. 2002;33:1048–52.

    CAS  PubMed  Google Scholar 

  80. Wu H, Jia Q, Liu G, Liu L, Pu Y, Zhao X, Wang C, Wang Y, Wang Y. Decreased uric Acid levels correlate with poor outcomes in acute ischemic stroke patients, but not in cerebral hemorrhage patients. J Stroke Cerebrovasc Dis. 2014;23(3):469–75.

    PubMed  Google Scholar 

  81. Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, Asmar R, Reneman RS, Hoeks AP, Breteler MM, Witteman JC. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113(5):657–63.

    PubMed  Google Scholar 

  82. Weir MR, Townsend RR. Vascular stiffness as a surrogate measure of mortality in patients with chronic kidney disease. J Hypertens. 2014;32(4):744–5.

    CAS  PubMed  Google Scholar 

  83. Maruhashi T, Nakashima A, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, Kajikawa M, Matsumoto T, Hidaka T, Kihara Y, Chayama K, Goto C, Noma K, Tomiyama H, Takase B, Yamashina A, Higashi Y. Hyperuricemia is independently associated with endothelial dysfunction in postmenopausal women but not in premenopausal women. BMJ Open. 2013;3(11):e003659.

    PubMed Central  PubMed  Google Scholar 

  84. Saijo Y, Utsugi M, Yoshioka E, Horikawa N, Sato T, Gong YY, Kishi R. Relationships of C-reactive protein, uric acid, and glomerular filtration rate to arterial stiffness in Japanese subjects. J Hum Hypertens. 2005;19(11):907–13.

    CAS  PubMed  Google Scholar 

  85. Liang J, Li Y, Zhou N, Teng F, Zhao J, Zou C, Qi L. Synergistic effects of serum uric acid and cardiometabolic risk factors on early stage atherosclerosis: the cardiometabolic risk in Chinese study. PLoS One. 2012;7(12):e51101.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Iribarren C, Folsom AR, Eckfeldt JH, McGovern PG, Nieto FJ. Correlates of uric acid and its association with asymptomatic carotid atherosclerosis: the ARIC study. Atherosclerosisi Risk In Communities. Ann Epidemiol. 1996;694:331–40.

    Google Scholar 

  87. Tsioufis C, Kyvelou S, Dimitriadis K, Syrseloudis D, Sideris S, Skiadas I, Katsi V, Stefanadi E, Lalos S, Mihas C, Poulakis M, Stefanadis C. The diverse associations of uric acid with low-grade inflammation, adiponectin and arterial stiffness in never-treated hypertensives. J Hum Hypertens. 2011;25(9):554–9.

    CAS  PubMed  Google Scholar 

  88. Johnson RJ, Nakagawa T, Jalal D, Sánchez-Lozada LG, Kang DH, Ritz E. Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant. 2013;28(9):2221–8.

    CAS  PubMed  Google Scholar 

  89. Sánchez-Lozada LG, Soto V, Tapia E, Avila-Casado C, Sautin YY, Nakagawa T, Franco M, Rodríguez-Iturbe B, Johnson RJ. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am J Physiol Renal Physiol. 2008;295(4):F1134–41.

    PubMed Central  PubMed  Google Scholar 

  90. Ryu E-S, Kim MJ, Shin H-S, et al. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol. 2013;304:F471–80.

    CAS  Google Scholar 

  91. Rabadi MM, Kuo MC, Ghaly T, Rabadi SM, Weber M, Goligorsky MS, Ratliff BB. Interaction between uric acid and HMGB1 translocation and release from endothelial cells. Am J Physiol Renal Physiol. 2012;302(6):F730–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Alvarez-Lario B, Macarrón-Vicente J. Is there anything good in uric acid? QJM. 2011;104(12):1015–24.

    CAS  PubMed  Google Scholar 

  93. Kanbay M, Sánchez-Lozada LG, Franco M, Madero M, Solak Y, Rodriguez-Iturbe B, Covic A, Johnson RJ. Microvascular disease and its role in the brain and cardiovascular system: a potential role for uric acid as a cardiorenal toxin. Nephrol Dial Transplant. 2011;26(2):430–7.

    CAS  PubMed  Google Scholar 

  94. Hsu CY, Iribarren C, McCulloch CE, Darbinian J, Go AS. Risk factors for end-stage renal disease: 25-year follow-up. Arch Intern Med. 2009;169(4):342–50.

    PubMed Central  PubMed  Google Scholar 

  95. Chonchol M, Shlipak MG, Katz R, Sarnak MJ, Newman AB, Siscovick DS, Kestenbaum B, Carney JK, Fried LF. Relationship of uric acid with progression of kidney disease. Am J Kidney Dis. 2007;50(2):239–47.

    CAS  PubMed  Google Scholar 

  96. Madero M, Sarnak MJ, Wang X, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis. 2009;53(5):796–803.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Einollahi B, Einollahi H, Nafar M, Rostami Z. Prevalence and risk factors of hyperuricemia among kidney transplant recipients.Indian. J Nephrol. 2013;23(3):201–5.

    CAS  Google Scholar 

  98. Akgul A, Bilgic A, Ibis A, Ozdemir FN, Arat Z, Haberal M. Is uric acid a predictive factor for graft dysfunction in renal transplant recipients? Transplant Proc. 2007;39(4):1023–6.

    CAS  PubMed  Google Scholar 

  99. Armstrong KA, Johnson DW, Campbell SB, Isbel NM, Hawley CM. Does uric acid have a pathogenetic role in graft dysfunction and hypertension in renal transplant recipients? Transplantation. 2005;80(11):1565–71.

    CAS  PubMed  Google Scholar 

  100. Haririan A, Nogueira JM, Zandi-Nejad K, et al. The independent association between serum uric acid and graft outcomes after kidney transplantation. Transplantation. 2010;89(5):573–9.

    CAS  PubMed  Google Scholar 

  101. Kim KM, Kim SS, Yun S, Lee MS, Han DJ, Yang WS, Park JS, Park SK. Uric acid contributes to glomerular filtration rate deterioration in renal transplantation. Nephron Clin Pract. 2011;118:c136–42.

    CAS  PubMed  Google Scholar 

  102. Meier-Kriesche HU, Schold JD, Vanrenterghem Y, Halloran PF, Ekberg H. Uric acid levels have no significant effect on renal function in adult renal transplant recipients: evidence from the Symphony Study. Clin J Am Soc Nephrol. 2009;4(10):1655–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Huang Y, Li YL, Huang H, Wang L, Yuan WM, Li J. Effects of hyperuricemia on renal function of renal transplant recipients: a systematic review and meta-analysis of cohort studies. PLoS One. 2012;7(6):e39457.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Schumacher Jr HR, Becker MA, Wortmann RL, Macdonald PA, Hunt B, Streit J, Lademacher C, Joseph-Ridge N. Effects of ebuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum. 2008;59(11):1540–8.

    CAS  PubMed  Google Scholar 

  105. Hershfield MS, Roberts LJI, Ganson NJ, et al. Treating gout with pegloticase, a PEGylated urate oxidase, provides insight into the importance of uric acid as an antioxidant in vivo. Proc Natl Acad Sci. 2010;107(32):14351–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Riegersperger M, Covic A, Goldsmith D. Allopurinol, uric acid, and oxidative stress in cardiorenal disease. Int Urol Nephrol. 2011;43(2):441–9.

    CAS  PubMed  Google Scholar 

  107. Khatib SY, Farah H, El-Migdadi F. Allopurinol enhances adenine nucleotide levels and improves myocardial function in isolated hypoxic rat heart. Biochemistry (Mosc). 2001;66:328–33.

    CAS  Google Scholar 

  108. Hirsch GA, Bottomley PA, Gerstenblith G, et al. Allopurinol acutely increases adenosine triphospate energy delivery in failing human hearts. J Am Coll Cardiol. 2012;59:802–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Noman A, Ang DS, Ogston S, et al. Effect of high dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled, crossover trial. Lancet. 2010;375:2161–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Struthers A, Shearer F. Allopurinol: novel indications in cardiovascular disease. Heart. 2012;98(21):1543–5.

    CAS  PubMed  Google Scholar 

  111. Agarwal V, Hans N, Messerli FH. Effect of allopurinol on blood pressure: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2013;15(6):435–42.

    CAS  Google Scholar 

  112. Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2005;47:51–9.

    Google Scholar 

  113. Gois PH, Luchi WM, Seguro AC. Allopurinol on hypertension: insufficient evidence to recommend. J Clin Hypertens (Greenwich). 2013;15(9):700.

    CAS  Google Scholar 

  114. Guan W, Osanai T, Kamada T, et al. Effect of allopurinol pretreatment on free radical generation after primary coronary angioplasty for acute myocardial infarction. J Cardiovasc Pharmacol. 2003;41(5):699–705.

    CAS  PubMed  Google Scholar 

  115. Noman A, Ang DSC, Ogston S, et al. Effect of high-dose allopurinol on exercise in patients with chronic stable agina: a randomised, placebo controlled crossover trial. Lancet. 2010;357(9749):2161–7.

    Google Scholar 

  116. Landmesser U, Spiekermann S, Preuss C, et al. Angiotensin II induces endothelial xanthine oxidase activation—role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol. 2007;27(4):943–8.

    CAS  PubMed  Google Scholar 

  117. Nasr G, Maurice C. Allopurinol and global left myocardial function in heart failure patients. J Cardiovasc Dis Res. 2010;1(4):191–5.

    PubMed Central  PubMed  Google Scholar 

  118. Goicoechea M, de Vinuesa SG, Verdalles U, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5(8):1388–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Shi Y, Chen W, Jalal D, et al. Clinical outcome of hyperuricemia in IgA nephropathy: a retrospective cohort study and randomized controlled trial. Kidney Blood Press Res. 2011;35(3):153–60.

    PubMed Central  PubMed  Google Scholar 

  120. Bose B, Badve SV, Hiremath SS, Boudville N, Brown FG, Cass A, de Zoysa JR, Fassett RG, Faull R, Harris DC, Hawley CM, Kanellis J, Palmer SC, Perkovic V, Pascoe EM, Rangan GK, Walker RJ, Walters G, Johnson DW. Effects of uric acid-lowering therapy on renal outcomes: a systematic review and meta-analysis. Nephrol Dial Transplant. 2014;29(2):406–13.

    CAS  PubMed  Google Scholar 

  121. Thirumoorthy T. Allopurinol hypersensitivity syndrome: a preventable severe cutaneous adverse reaction? Singapore Med J. 2008;49(5):384–7.

    PubMed  Google Scholar 

  122. Calogiuri G, Nettis E, Di Leo E, Foti C, Ferrannini A, Butani L. Allopurinol hypersensitivity reactions: desensitization strategies and new therapeutic alternative molecules. Inflamm Allergy Drug Targets. 2013;12(1):19–28.

    CAS  PubMed  Google Scholar 

  123. Ramasamy SN, Korb-Wells CS, Kannangara DR, Smith MW, Wang N, Roberts DM, Graham GG, Williams KM, Day RO. Allopurinol hypersensitivity: a systematic review of all published cases, 1950–2012. Drug Saf. 2013;36(10):953–80.

    CAS  PubMed  Google Scholar 

  124. Yun J, Mattsson J, Schnyder K, Fontana S, Largiadèr CR, Pichler WJ, Yerly D. Allopurinol hypersensitivity is primarily mediated by dose-dependent oxypurinol-specific T cell response. Clin Exp Allergy. 2013;43(11):1246–55.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luminita Voroneanu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Covic, A., Voroneanu, L. (2015). Uric Acid, Allopurinol: The Cardio-Renal Silver Bullet?. In: Goldsmith, D., Covic, A., Spaak, J. (eds) Cardio-Renal Clinical Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-09162-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09162-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09161-7

  • Online ISBN: 978-3-319-09162-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics