Skip to main content

L  ∞ -Discrepancy Analysis of Polynomial-Time Deterministic Samplers Emulating Rapidly Mixing Chains

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Abstract

Markov chain Monte Carlo (MCMC) is a standard technique to sample from a target distribution by simulating Markov chains. In an analogous fashion to MCMC, this paper proposes a deterministic sampling algorithm based on deterministic random walk, such as the rotor-router model (a.k.a. Propp machine). For the algorithm, we give an upper bound of the point-wise distance (i.e., infinity norm) between the “distributions” of a deterministic random walk and its corresponding Markov chain in terms of the mixing time of the Markov chain. As a result, for uniform sampling of #P-complete problems, such as 0-1 knapsack solutions, linear extensions, matchings, etc., for which rapidly mixing chains are known, our deterministic algorithm provides samples with a “distribution” with a point-wise distance at most ε from the target distribution, in time polynomial in the input size and ε − 1.

This manuscript is an extended abstract version of [19].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbari, H., Berenbrink, P.: Parallel rotor walks on finite graphs and applications in discrete load balancing. In: Proc. SPAA 2013, pp. 186–195 (2013)

    Google Scholar 

  2. Angel, O., Holroyd, A.E., Martin, J., Propp, J.: Discrete low discrepancy sequences, arXiv:0910.1077

    Google Scholar 

  3. Bubley, R., Dyer, M.: Faster random generation of linear extensions. Discrete Mathematics 201, 81–88 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cooper, J., Doerr, B., Friedrich, T., Spencer, J.: Deterministic random walks on regular trees. Random Structures & Algorithms 37, 353–366 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cooper, J., Doerr, B., Spencer, J., Tardos, G.: Deterministic random walks on the integers. European Journal of Combinatorics 28, 2072–2090 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cooper, J., Spencer, J.: Simulating a random walk with constant error. Combinatorics, Probability and Computing 15, 815–822 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Doerr, B., Friedrich, T.: Deterministic random walks on the two-dimensional grid. Combinatorics, Probability and Computing 18, 123–144 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Friedrich, T., Gairing, M., Sauerwald, T.: Quasirandom load balancing. SIAM Journal on Computing 41, 747–771 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gopalan, P., Klivans, A., Meka, R., Stefankovic, D., Vempala, S., Vigoda, E.: An FPTAS for #knapsack and related counting problems. In: Proc. FOCS 2011, pp. 817–826 (2011)

    Google Scholar 

  10. Holroyd, A.E., Propp, J.: Rotor walks and Markov chains. In: Lladser, M., Maier, R.S., Mishna, M., Rechnitzer, A. (eds.) Algorithmic Probability and Combinatorics, pp. 105–126. The American Mathematical Society (2010)

    Google Scholar 

  11. Hosoya, H.: Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bulletin of the Chemical Society of Japan 44, 2332–2339 (1971)

    Article  Google Scholar 

  12. Jerrum, M., Sinclair, A.: Approximation algorithms for NP-hard problems. In: Hochbaum, D.S. (ed.) The Markov Chain Monte Carlo Method: An Approach to Approximate Counting and Integration. PWS Publishing (1996)

    Google Scholar 

  13. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM 51, 671–697 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karzanov, A., Khachiyan, L.: On the conductance of order Markov chains. Order 8, 7–15 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kijima, S., Koga, K., Makino, K.: Deterministic random walks on finite graphs. In: Proc. ANALCO 2012, pp. 16–25 (2012)

    Google Scholar 

  16. Levine, D.A., Peres, Y., Wilmer, E.L.: Markov Chain and Mixing Times. American Mathematical Society (2008)

    Google Scholar 

  17. Morris, B., Sinclair, A.: Random walks on truncated cubes and sampling 0-1 knapsack solutions. SIAM Journal on Computing 34, 195–226 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of Markov chains and analysis of iterative load balancing schemes. In: Proc. FOCS 1998, pp. 694–705 (1998)

    Google Scholar 

  19. Shiraga, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Deterministic random walks for rapidly mixing chains, arXiv:1311.3749

    Google Scholar 

  20. Sinclair, A.: Algorithms for Random Generation & Counting, A Markov chain approach. Birkhäuser (1993)

    Google Scholar 

  21. Tijdeman, R.: The chairman assignment problem. Discrete Math. 32, 323–330 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8, 410–421 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shiraga, T., Yamauchi, Y., Kijima, S., Yamashita, M. (2014). L  ∞ -Discrepancy Analysis of Polynomial-Time Deterministic Samplers Emulating Rapidly Mixing Chains. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics