Skip to main content

The Response of Plants to Simultaneous Biotic and Abiotic Stress

  • Chapter
  • First Online:
Combined Stresses in Plants

Abstract

Plants respond to multiple simultaneous stresses in a complex manner that is different to that for individual stresses, and not merely additive. This is particularly true for concurrent biotic and abiotic stresses, which may normally elicit conflicting response mechanisms. To tailor the stress response to the exact set of environmental conditions encountered, plants employ an interacting network of signalling pathways involving hormones, transcription factors and downstream response elements. This may have the effect of increasing tolerance to one stress at the expense of another, in order to focus on the most potentially damaging stress. As responses to simultaneous biotic and abiotic stresses are non-linear, it is crucial to understand the mechanisms involved in order to develop stress-tolerant crop plants. Any such plants should then be tested under a wide range of concurrent stresses. This is increasingly important in the face of climatological change, which will alter the range of pests and pathogens, as well as exacerbating the effects of many existing abiotic stresses. This chapter examines the mechanisms by which plants respond to simultaneous biotic and abiotic stresses, highlighting the effects on agriculture, and in particular rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol. 2004;55(4):541–52.

    CAS  PubMed  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell Online. 2003;15(1):63–78.

    CAS  Google Scholar 

  • AbuQamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J. 2009;58(2):347–60.

    CAS  PubMed  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant. 2008;133(4):682–91.

    CAS  PubMed  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell Online. 2004;16(12):3460–79.

    CAS  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, et al. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J. 2012;69(1):26–36.

    CAS  PubMed  Google Scholar 

  • Asselbergh B, Curvers K, França SC, Audenaert K, Vuylsteke M, Van Breusegem F, et al. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 2007;144(4):1863–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M. Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant-Microbe Interact. 2008a;21(6):709–19.

    Google Scholar 

  • Asselbergh B, Achuo AE, Höfte M, Van Gijsegem F. Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi. Mol Plant Pathol. 2008b;9(1):11–24.

    Google Scholar 

  • Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012;63(10):3523–43.

    CAS  PubMed  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 2013;162(4):2028–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Audebert A, Coyne D, Dingkuhn M, Plowright R. The influence of cyst nematodes (Heterodera sacchari) and drought on water relations and growth of upland rice in Côte d’Ivoire. Plant Soil. 2000;220(1–2):235–42.

    CAS  Google Scholar 

  • Audenaert K, De Meyer GB, Höfte MM. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol. 2002;128(2):491–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baena-González E, Sheen J. Convergent energy and stress signaling. Trends Plant Sci. 2008;13(9):474–82.

    PubMed Central  PubMed  Google Scholar 

  • Balass M, Cohen Y, Bar-Joseph M. Temperature-dependent resistance to downy mildew in muskmelon: structural responses. Physiol Mol Plant Pathol. 1993;43(1):11–20.

    Google Scholar 

  • Balderas-Hernández VE, Alvarado-Rodríguez M, Fraire-Velázquez S. Conserved versatile master regulators in signalling pathways in response to stress in plants. AoB Plants. 2013;5:plt033.

    PubMed Central  PubMed  Google Scholar 

  • Bechtold U, Albihlal WS, Lawson T, Fryer MJ, Sparrow PA, Richard F, et al. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection. J Exp Bot. 2013;64(11):3467–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bergelson J, Purrington CB. Surveying patterns in the cost of resistance in plants. Am Nat. 1996;148:536–58.

    Google Scholar 

  • Blande JD, Holopainen JK, Niinemets Ü. Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ. 2014:37:1892–904.

    CAS  PubMed  Google Scholar 

  • Bourbon H-M. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res. 2008;36(12):3993–4008.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bray EA. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot. 2004;55(407):2331–41.

    CAS  PubMed  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM. Insect host location: a volatile situation. Trends Plant Sci. 2005;10(6):269–74.

    CAS  PubMed  Google Scholar 

  • Cao Y, Song F, Goodman RM, Zheng Z. Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J Plant Physiol. 2006;163(11):1167–78.

    CAS  PubMed  Google Scholar 

  • Casteel CL, Segal LM, Niziolek OK, Berenbaum MR, Delucia EH. Elevated carbon dioxide increases salicylic acid in Glycine max. Environ Entomol. 2012;41(6):1435–42.

    CAS  PubMed  Google Scholar 

  • Chakraborty S. Potential impact of climate change on plant-pathogen interactions. Australas Plant Pathol. 2005;34(4):443–8.

    Google Scholar 

  • Chen X-f, Gu Z-m, Liu F, Ma B-j, Zhang H-S. Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses. Rice Sci. 2011;18(1):1–9.

    Google Scholar 

  • Choi H-K, Iandolino A, da Silva FG, Cook DR. Water deficit modulates the response of Vitis vinifera to the Pierce’s disease pathogen Xylella fastidiosa. Mol Plant Microbe Interact. 2013;26(6):643–57.

    CAS  PubMed  Google Scholar 

  • Cockfield S, Potter D. Interaction of euonymus scale (Homoptera: Diaspididae) feeding damage and severe water stress on leaf abscission and growth of Euonymus fortunei. Oecologia. 1986;71(1):41–6.

    Google Scholar 

  • Copolovici L, Kännaste A, Remmel T, Niinemets Ü. Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses. Environ Exp Bot. 2014;100:55–63.

    CAS  Google Scholar 

  • De Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Rodriguez Egea P, et al. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 2007;26(5):1434–43.

    PubMed Central  PubMed  Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci. 2013;24:4.

    Google Scholar 

  • Deyholos MK. Making the most of drought and salinity transcriptomics. Plant Cell Environ. 2010;33(4):648–54.

    CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010;15(10):573–81.

    CAS  PubMed  Google Scholar 

  • Eizenberg H, Colquhoun J, Mallory-Smith CA. The relationship between temperature and small broomrape (Orobanche minor) parasitism in red clover (Trifolium pratense). Weed Biol Ecol. 2004;52(5);735–741.

    CAS  Google Scholar 

  • Eizenberg H, Hershenhorn J, Plakhine D, Kleifeld Y, Shtienberg D, Rubin B. Effect of temperature on susceptibility of sunflower varieties to sunflower broomrape (Orobanche cumana) and Egyptian broomrape (Orobanche aegyptiaca). Weed Sci. 2009;51(3):279–86.

    Google Scholar 

  • English-Loeb GM. Plant drought stress and outbreaks of spider mites: a field test. Ecology. 1990;71:1401–11.

    Google Scholar 

  • English-Loeb G, Stout MJ, Duffey SS. Drought stress in tomatoes: changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos. 1997;79:456–68.

    Google Scholar 

  • Erb M, Köllner TG, Degenhardt J, Zwahlen C, Hibbard BE, Turlings TC. The role of abscisic acid and water stress in root herbivore-induced leaf resistance. New Phytol. 2011;189(1):308–20.

    CAS  PubMed  Google Scholar 

  • Feng DX, Tasset C, Hanemian M, Barlet X, Hu J, Trémousaygue D, et al. Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. New Phytol. 2012;194(4):1035–45.

    CAS  PubMed  Google Scholar 

  • Fischer R, Byerlee D, Edmeades GO, editors. Can technology deliver on the yield challenge to 2050. Expert meeting on how to feed the world in 2009.

    Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science. 2009;323(5919):1357–60.

    CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol. 2006;9(4):436–42. doi:10.1016/j.pbi.2006.05.014.

    PubMed  Google Scholar 

  • Garrett K, Dendy S, Frank E, Rouse M, Travers S. Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol. 2006;44:489–509.

    CAS  PubMed  Google Scholar 

  • Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman J, et al. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul. 2002;37(3):263–85.

    CAS  Google Scholar 

  • Goel AK, Lundberg D, Torres MA, Matthews R, Akimoto-Tomiyama C, Farmer L, et al. The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Mol Plant-Microbe Interact. 2008;21(3):361–70.

    CAS  PubMed  Google Scholar 

  • Gregory PJ, Johnson SN, Newton AC, Ingram JS. Integrating pests and pathogens into the climate change/food security debate. J Exp Bot. 2009;60(10):2827–38.

    CAS  PubMed  Google Scholar 

  • Gu Z, Wang J, Huang J, Zhang H. Cloning and characterization of a novel rice gene family encoding putative dual-specificity protein kinases, involved in plant responses to abiotic and biotic stresses. Plant Sci. 2005;169(3):470–7.

    CAS  Google Scholar 

  • Gupta A, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci. 2005;30(5):761–76.

    CAS  PubMed  Google Scholar 

  • Gutbrodt B, Mody K, Dorn S. Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos. 2011;120(11):1732–40.

    CAS  Google Scholar 

  • Henfling J, Bostock R, Kuc J. Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporium cucumerinum in potato tuber tissue slices. Phytopathology. 1980;70(11):1074–8.

    CAS  Google Scholar 

  • Herms DA, Mattson WJ. The dilemma of plants: to grow or defend. Q Rev Biol. 1992;67:283–335.

    Google Scholar 

  • Himanen SJ, Nerg A-M, Nissinen A, Pinto DM, Stewart CN, Poppy GM, et al. Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus). New Phytol. 2009;181(1):174–86.

    CAS  PubMed  Google Scholar 

  • Holopainen JK, Gershenzon J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010;15(3):176–84.

    CAS  PubMed  Google Scholar 

  • Iyer NJ, Tang Y, Mahalingam R. Integrative analysis of combined water-deficit and ozone stress in Medicago truncatula. Plant Cell Environ. 2013;36:706–20.

    CAS  PubMed  Google Scholar 

  • Jacobsen JV, Hanson AD, Chandler PC. Water stress enhances expression of an α-amylase gene in barley leaves. Plant Physiol. 1986;80(2):350–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang C-J, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, et al. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant-Microbe Interact. 2010;23(6):791–8.

    CAS  PubMed  Google Scholar 

  • Khan MR, Khan MW. Interaction of Meloidogyne incognita and coal-smoke pollutants on tomato. Nematropica. 1996;26(1):47–56.

    Google Scholar 

  • Koga H, Dohi K, Mori M. Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol. 2004;65(1):3–9.

    CAS  Google Scholar 

  • Koo AJK, Cooke TF, Howe GA. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Natl Acad Sci U S A. 2011;108(22):9298–303.

    Google Scholar 

  • Kusajima M, Yasuda M, Kawashima A, Nojiri H, Yamane H, Nakajima M, et al. Suppressive effect of abscisic acid on systemic acquired resistance in tobacco plants. J Gen Plant Pathol. 2010;76(2):161–7.

    CAS  Google Scholar 

  • Laurie-Berry N, Joardar V, Street IH, Kunkel BN. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol Plant Microbe Interact. 2006;19(7):789–800.

    CAS  PubMed  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot. 2009;60(10):2859–76.

    CAS  PubMed  Google Scholar 

  • Lee SC, Luan S. ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ. 2012;35(1):53–60.

    CAS  PubMed  Google Scholar 

  • Lobell DB, Cassman KG, Field CB. Crop yield gaps: their importance, magnitudes, and causes. Ann Rev Environ Res. 2009;34(1):179.

    Google Scholar 

  • Loreto F, Schnitzler J-P. Abiotic stresses and induced BVOCs. Trends Plant Sci. 2010;15(3):154–66.

    CAS  PubMed  Google Scholar 

  • Luck J, Spackman M, Freeman A, Griffiths W, Finlay K, Chakraborty S. Climate change and diseases of food crops. Plant Pathol. 2011;60(1):113–21.

    Google Scholar 

  • Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. Callose deposition: a multifaceted plant defense response. Mol Plant Microbe Interact. 2011;24(2):183–93.

    CAS  PubMed  Google Scholar 

  • Luo M, Liang XQ, Dang P, Holbrook CC, Bausher MG, Lee RD, et al. Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci. 2005;169(4):695–703.

    CAS  Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 2009;324(5930):1064–8.

    CAS  PubMed  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature. 2002;419(6905):399–403. [10.1038/nature00962]

    CAS  PubMed  Google Scholar 

  • Mattson WJ, Haack RA. The role of drought in outbreaks of plant-eating insects. BioScience. 1987;37(2):110–8.

    Google Scholar 

  • Mauch-Mani B, Mauch F. The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol. 2005;8(4):409–14.

    CAS  PubMed  Google Scholar 

  • Maxmen A. Crop pests: under attack. Nature. [Outlook]. 2013;501(7468):S15–7.

    CAS  PubMed  Google Scholar 

  • Mayek-Perez N, GarcÍa-Espinosa R, LÓpez-CastaÑeda C, Acosta-Gallegos JA, Simpson J. Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiol Mol Plant Pathol. 2002;60(4):185–95.

    Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY. Plant stomata function in innate immunity against bacterial invasion. Cell. 2006;126(5):969–80.

    CAS  PubMed  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell Online. 2003;15(11):2551–65.

    CAS  Google Scholar 

  • Miller G, Mittler R. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot. 2006;98(2):279–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33(4):453–67.

    CAS  PubMed  Google Scholar 

  • Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11(1):15–9.

    CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol. 2010;61:443–62.

    CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM. Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol. 2003;30(4):461–9.

    CAS  Google Scholar 

  • Mohr PG, Cahill DM. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics. 2007;7(3):181–91.

    CAS  PubMed  Google Scholar 

  • Molina A, García-Olmedo F. Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J. 1997;12(3):669–75.

    CAS  PubMed  Google Scholar 

  • Moriondo M, Giannakopoulos C, Bindi M. Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Change. 2011;104(3-4):679–701.

    Google Scholar 

  • Nakashima K, Tran L-SP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007;51(4):617–30.

    CAS  PubMed  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, et al. Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol. 2004;55(3):327–42.

    CAS  PubMed  Google Scholar 

  • Németh M, Janda T, Horváth E, Páldi E, Szalai G. Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci. 2002;162(4):569–74.

    Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ. Implications of climate change for diseases, crop yields and food security. Euphytica. 2011;179(1):3–18.

    Google Scholar 

  • Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M. Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Rep. 2008;27(10):1677–86.

    CAS  PubMed  Google Scholar 

  • Peng X-x, Tang X-k, Zhou P-l, Hu Y-j, Deng X-b, He Y, et al. Isolation and expression patterns of rice WRKY82 transcription factor gene responsive to both biotic and abiotic stresses. Agric Sci China. 2011;10(6):893–901.

    CAS  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC. Networking by small-molecule hormones in plant immunity. Nat Chem Biol. 2009;5(5):308–16.

    CAS  PubMed  Google Scholar 

  • Prasch CM, Sonnewald U. Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol. 2013;162(4):1849–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, et al. Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 2013;161(4):1783–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004;134(4):1683–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers A, Ainsworth EA, Leakey AD. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol. 2009;151(3):1009–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rohila JS, Yang Y. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol. 2007;49(6):751–9.

    CAS  Google Scholar 

  • Runyon JB, Mescher MC, De Moraes CM. Volatile chemical cues guide host location and host selection by parasitic plants. Science. 2006;313(5795):1964–7.

    CAS  PubMed  Google Scholar 

  • Sánchez-Vallet A, López G, Ramos B, Delgado-Cerezo M, Riviere M-P, Llorente F, et al. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol. 2012;160(4):2109–24.

    PubMed Central  PubMed  Google Scholar 

  • Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, Pastor V, et al. Jasmonate signaling in plant development and defense response to multiple (a) biotic stresses. Plant Cell Rep. 2013;32(7):1085–98.

    CAS  PubMed  Google Scholar 

  • Sawinski K, Mersmann S, Robatzek S, Böhmer M. Guarding the green: pathways to stomatal immunity. Mol Plant Microbe Interact. 2013;26(6):626–32.

    CAS  PubMed  Google Scholar 

  • Scherm H. Climate change: can we predict the impacts on plant pathology and pest management? Can J Plant Pathol. 2004;26(3):267–73.

    Google Scholar 

  • Schmidhuber J, Tubiello FN. Global food security under climate change. Proc Natl Acad Sci U S A. 2007;104(50):19703–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC. Recent advances in dissecting stress-regulatory crosstalk in rice. Mol Plant. 2013;6(2):250–60.

    CAS  PubMed  Google Scholar 

  • Shimono M, Koga H, Akagi A, Hayashi N, Goto S, Sawada M, et al. Rice WRKY45 plays important roles in fungal and bacterial disease resistance. Mol Plant Pathol. 2012;13(1):83–94.

    CAS  PubMed  Google Scholar 

  • Singh P, Siva R, Gothandam KM, Babu S. Naturally existing levels of Osmyb4 gene expression in rice cultivars correlate with their reaction to fungal and bacterial pathogens. J Phytopathol. 2013;161(10):730–4.

    CAS  Google Scholar 

  • Smit AL, Vamerali T. The influence of potato cyst nematodes (Globodera pallida) and drought on rooting dynamics of potato (Solanum tuberosum L. ). Eur J Agron. 1998;9(2–3):137–46.

    Google Scholar 

  • Sun Y, Cao H, Yin J, Kang L, Ge F. Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant Cell Environ. 2010;33(5):729–39.

    CAS  PubMed  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32–43.

    PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, et al. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics. 2010;284(3):173–83.

    CAS  PubMed  Google Scholar 

  • Tao Z, Liu H, Qiu D, Zhou Y, Li X, Xu C, et al. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol. 2009;151(2):936.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot. 2011;62(14):4863–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tariq M, Wright DJ, Bruce TJ, Staley JT. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals. PLoS ONE. 2013;8(7):e69013.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ton J, Mauch-Mani B. β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 2004;38(1):119–30.

    CAS  PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci. 2009;14(6):310–7.

    CAS  PubMed  Google Scholar 

  • Tumlinson JH. The importance of volatile organic compounds in ecosystem functioning. J Chem Ecol. 2014;40(3):212–3.

    CAS  PubMed  Google Scholar 

  • van Hulten M, Pelser M, Van Loon L, Pieterse CM, Ton J. Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A. 2006;103(14):5602–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, et al. The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol. 2006;69(1):26–42.

    CAS  Google Scholar 

  • Vannini C, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, et al. Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Sci. 2007;173(2):231–9.

    CAS  Google Scholar 

  • Vignols F, Wigger M, García-Garrido JM, Grellet F, Kader J-C, Delseny M. Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentially regulated. Gene. 1997;195(2):177–86.

    CAS  PubMed  Google Scholar 

  • von Koskull-Döring P, Scharf K-D, Nover L. The diversity of plant heat stress transcription factors. Trends Plant Sci. 2007;12(10):452–7.

    PubMed  Google Scholar 

  • Vuorinen T, Nerg A-M, Holopainen JK. Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ Pollut. 2004;131(2):305–11.

    CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218(1):1–14.

    CAS  PubMed  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, et al. An update on abscisic acid signaling in plants and more…. Mol Plant. 2008;1(2):198–217.

    CAS  PubMed  Google Scholar 

  • Webb K, Ona I, Bai J, Garrett K, Mew T, Cruz V, et al. A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytol. 2010;185(2):568–76.

    CAS  PubMed  Google Scholar 

  • Xiao J, Cheng H, Li X, Xiao J, Xu C, Wang S. Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plant Physiol. 2013;163(4):1868–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell Online. 2008;20(6):1678–92.

    CAS  Google Scholar 

  • Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot. 2013a;64(16):5085–97.

    Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Iwabuchi M, Matsui M, Hirochika H, et al. Role of the rice transcription factor JAmyb in abiotic stress response. J Plant Res. 2013b;126(1):131–9.

    Google Scholar 

  • Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, et al. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics. 2011;286(5–6):321–32.

    CAS  PubMed  Google Scholar 

  • Zavala JA, Casteel CL, DeLucia EH, Berenbaum MR. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc Natl Acad Sci U S A. 2008;105(13):5129–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, et al. Diverse signals converge at MAPK cascades in plant. Plant Physiol Biochem. 2006;44(5):274–83.

    CAS  PubMed  Google Scholar 

  • Zhu Y, Qian W, Hua J. Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog. 2010;6(4):e1000844.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicky J Atkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Atkinson, N., Jain, R., Urwin, P. (2015). The Response of Plants to Simultaneous Biotic and Abiotic Stress. In: Mahalingam, R. (eds) Combined Stresses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07899-1_9

Download citation

Publish with us

Policies and ethics