Skip to main content

Solving Ordinary Differential Equations

  • Chapter
  • First Online:
Numerical Methods and Optimization

Abstract

Differential equations play a crucial role in the simulation of physical systems, and most of them can only be solved numerically. Ordinary differential equations (or ODEs) have only one independent variable and are the simplest case by far. Various procedures are described and illustrated for getting ODEs in state-space form (as required by most ODE solvers). Initial-value problems (IVPs), where the value of the state is known at the start of the simulation are then considered. The pros and cons of the main explicit and implicit single-step and multistep methods for solving IVPs are described, and procedures for assessing local and global errors and for tuning step-size based on the local behavior of the solution are explained. Boundary-value problems (BVPs) are finally considered, and in particular two-endpoint BVPs, where partial information is available on the initial and final states. Since most methods for solving BVPs for ODEs extend to solving partial differential equations, this latter part also serves as an introduction to the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higham, D.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gear, C.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  3. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (1980)

    Book  Google Scholar 

  4. Gupta, G., Sacks-Davis, R., Tischer, P.: A review of recent developments in solving ODEs. ACM Comput. Surv. 17(1), 5–47 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Shampine, L.: Numerical Solution of Ordinary Differential Equations. Chappman & Hall, New York (1994)

    MATH  Google Scholar 

  6. Shampine, L., Reichelt, M.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Shampine, L.: Vectorized solution of ODEs in MATLAB. Scalable Comput. Pract. Exper. 10(4), 337–345 (2009)

    MathSciNet  Google Scholar 

  8. Ashino, R., Nagase, M., Vaillancourt, R.: Behind and beyond the Matlab ODE suite. Comput. Math. Appl. 40, 491–512 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shampine, L., Kierzenka, J., Reichelt, M.: Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. http://www.mathworks.com/ (2000)

  10. Shampine, L., Gladwell, I., Thompson, S.: Solving ODEs in MATLAB. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  11. Moler, C.: Numerical Computing with MATLAB, revised reprinted edn. SIAM, Philadelphia (2008)

    Google Scholar 

  12. Jacquez, J.: Compartmental Analysis in Biology and Medicine. BioMedware, Ann Arbor (1996)

    Google Scholar 

  13. Gladwell, I., Shampine, L., Brankin, R.: Locating special events when solving ODEs. Appl. Math. Lett. 1(2), 153–156 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shampine, L., Thompson, S.: Event location for ordinary differential equations. Comput. Math. Appl. 39, 43–54 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Al-Mohy, A., Higham, N.: A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 31(3), 970–989 (2009)

    Article  MathSciNet  Google Scholar 

  17. Higham, N.: The scaling and squaring method for the matrix exponential revisited. SIAM Rev. 51(4), 747–764 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Butcher, J., Wanner, G.: Runge-Kutta methods: some historical notes. Appl. Numer. Math. 22, 113–151 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff O.D.E’.s. SIAM J. Numer. Anal. 14(6), 1006–1021 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  20. Butcher, J.: Implicit Runge-Kutta processes. Math. Comput. 18(85), 50–64 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. Steihaug T, Wolfbrandt A.: An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations. Math. Comput. 33(146):521–534 (1979)

    Google Scholar 

  22. Zedan, H.: Modified Rosenbrock-Wanner methods for solving systems of stiff ordinary differential equations. Ph.D. thesis, University of Bristol, Bristol, UK (1982)

    Google Scholar 

  23. Moore, R.: Mathematical Elements of Scientific Computing. Holt, Rinehart and Winston, New York (1975)

    MATH  Google Scholar 

  24. Moore, R.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  25. Bertz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Comput. 4, 361–369 (1998)

    Article  Google Scholar 

  26. Makino, K., Bertz, M.: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioning. Int. J. Differ. Equ. Appl. 10(4), 353–384 (2005)

    Google Scholar 

  27. Makino, K., Bertz, M.: Suppression of the wrapping effect by Taylor model-based verified integrators: the single step. Int. J. Pure Appl. Math. 36(2), 175–196 (2007)

    MATH  MathSciNet  Google Scholar 

  28. Klopfenstein, R.: Numerical differentiation formulas for stiff systems of ordinary differential equations. RCA Rev. 32, 447–462 (1971)

    MathSciNet  Google Scholar 

  29. Shampine, L.: Error estimation and control for ODEs. J. Sci. Comput. 25(1/2), 3–16 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Dahlquist, G.: A special stability problem for linear multistep methods. BIT Numer. Math. 3(1), 27–43 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  31. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  32. Hairer, E., Wanner, G.: On the instability of the BDF formulas. SIAM J. Numer. Anal. 20(6), 1206–1209 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mathews, J., Fink, K.: Numerical Methods Using MATLAB, 4th edn. Prentice-Hall, Upper Saddle River (2004)

    Google Scholar 

  34. Bogacki, P., Shampine, L.: A 3(2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2(4), 321–325 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  35. Dormand, J., Prince, P.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  36. Prince, P., Dormand, J.: High order embedded Runge-Kutta formulae. J. Comput. Appl. Math. 7(1), 67–75 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  37. Dormand, J., Prince, P.: A reconsideration of some embedded Runge-Kutta formulae. J. Comput. Appl. Math. 15, 203–211 (1986)

    Article  MATH  Google Scholar 

  38. Shampine, L.: What everyone solving differential equations numerically should know. In: Gladwell, I., Sayers, D. (eds.): Computational Techniques for Ordinary Differential Equations. Academic Press, London (1980)

    Google Scholar 

  39. Skufca, J.: Analysis still matters: A surprising instance of failure of Runge-Kutta-Felberg ODE solvers. SIAM Rev. 46(4), 729–737 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Shampine, L., Gear, C.: A user’s view of solving stiff ordinary differential equations. SIAM Rev. 21(1), 1–17 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  41. Segel, L., Slemrod, M.: The quasi-steady-state assumption: A case study in perturbation. SIAM Rev. 31(3), 446–477 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  42. Duchêne, P., Rouchon, P.: Kinetic sheme reduction, attractive invariant manifold and slow/fast dynamical systems. Chem. Eng. Sci. 53, 4661–4672 (1996)

    Article  Google Scholar 

  43. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.E.: Model reduction of chemical reaction systems using elimination. Math. Comput. Sci. 5, 289–301 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Petzold, L.: Differential/algebraic equations are not ODE’s. SIAM J. Sci. Stat. Comput. 3(3), 367–384 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  45. Reddien, G.: Projection methods for two-point boundary value problems. SIAM Rev. 22(2), 156–171 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  46. de Boor, C.: Package for calculating with B-splines. SIAM J. Numer. Anal. 14(3), 441–472 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  47. Farouki, R.: The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geom. Des. 29, 379–419 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  48. Bhatti, M., Bracken, P.: Solution of differential equations in a Bernstein polynomial basis. J. Comput. Appl. Math. 205, 272–280 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Russel, R., Shampine, L.: A collocation method for boundary value problems. Numer. Math. 19, 1–28 (1972)

    Article  MathSciNet  Google Scholar 

  50. Kierzenka, J., Shampine, L.: A BVP solver based on residual control and the MATLAB PSE. ACM Trans. Math. Softw. 27(3), 299–316 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  51. Gander, M., Wanner, G.: From Euler, Ritz, and Galerkin to modern computing. SIAM Rev. 54(4), 627–666 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  52. Lotkin, M.: The treatment of boundary problems by matrix methods. Am. Math. Mon. 60(1), 11–19 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  53. Russell, R., Varah, J.: A comparison of global methods for linear two-point boundary value problems. Math. Comput. 29(132), 1007–1019 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  54. de Boor, C., Swartz, B.: Comments on the comparison of global methods for linear two-point boudary value problems. Math. Comput. 31(140):916–921 (1977)

    Google Scholar 

  55. Walter, E.: Identifiability of State Space Models. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Walter .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Walter, É. (2014). Solving Ordinary Differential Equations. In: Numerical Methods and Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-07671-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07671-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07670-6

  • Online ISBN: 978-3-319-07671-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics