Skip to main content

Development of Collaborative Modular Assembly Micro-Robot Colonies for Use in Natural Orifice Transluminal Endoscopic Surgery: The LABYRINTH Approach

  • Chapter
  • First Online:
Concepts and Trends in Healthcare Information Systems

Abstract

From the mid-1980s up to date, the progress in the field of surgery is rapid. In late 90s, laparoscopic surgery had already been established from both practical and theoretical point of view. This, along with the evolution of technology, paved the way towards the broad application of minimally invasive surgery. During the very first interventions robots were tools with minor roles besides the operation table (e.g. Probot). The introduction of the daVinci system, made the breakthrough towards the wide application of robotic assisted surgery, and still today maintains the lead position in the field. Recently, NOTES (Natural Orifice Transluminal Endoscopic Surgery), gave another dimension to minimally invasive surgery. The main innovation in NOTES is that the endoscope and other surgical tools are inserted to human body through natural holes such as mouth anus etc. Endoscopic surgery is a well-developed method and therefore a wide variety of tools are already existing. Based on this and in order to support this technique, various types of micro-robots have been developed, that are building upon the NOTES concept and are supporting like their conventional counterparts endoscopic operations biopsies. Concurrently, in the medical field there has been the development of nanosurgery techniques which consequently led to development of nanorobots in order to support this trend. The last some of those equipped with biosensors and actuators. This paper proposes the so-called L.A.BY.R.IN.TH (Life Aided By Robotic Intrabdominal Therapists) as a holistic approach towards an integrated system based on NOTES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DJ, Becke C, Rothstein RI, Peine WJ (Oct 2007) Design of an endoluminal NOTES robotic system. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’07). San Diego, Calif, USA, e-ISBN: 978-1-4244-0912-9, pp 410–416

    Google Scholar 

  • Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T (2008) In-situ single cell mechanics characterization of yeast cells using nanoneedles inside environmental-SEM. IEEE Trans Nanotechnol 7(5):607–616

    Article  Google Scholar 

  • Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T (2010) Nanoindentation methods to measure viscoelastic properties of single cells using sharp, flat and buckling tips inside ESEM. IEEE Trans Nanobioscience 9(1):12–23

    Article  Google Scholar 

  • Ahmed K, Khan MS, Vats A, Nagpal K, Priest O, Patel V, Vecht JA, Ashrafian H et al (Oct, 2009) Current status of robotic assisted pelvic surgery and future developments. Int J Surg 7(5):431–440

    Article  Google Scholar 

  • Arezzo A, Morino M (Feb, 2010) Endoscopic closure of gastric access in perspective NOTES: an update on techniques and technologies. Surg Endosc 24(2):298–303. (Epub 2009 Jun 30. Review)

    Article  Google Scholar 

  • Blessing WD Jr, Ross JM, Kennedy CI, Richardson WS (Dec, 2005) Laparoscopicassisted peritoneal dialysis catheter placement, an improvement on the single trocar technique. Am Surg 71(12):1042–1046

    Google Scholar 

  • Botstein D, Chervitz SA, Cherry JM (1997) Genetics—yeast as a model organism. Science 277(5330):1259–1260

    Article  Google Scholar 

  • Camarillo DB, Krummel TM, Salisbury JK Jr (2004) Robotic technology in surgery: past, present, and future. Am J Surg 188(Suppl to Oct, 2004):2S–15S

    Article  Google Scholar 

  • Cavalcanti A, Hogg T, Shirinzadeh B, Liaw HC (2006) Nanorobot communication techniques: a comprehensive tutorial.,9th International Conference on Control Automation, Robotics and Vision, 2006 ICARCV, Grand Hyatt, Singapore, e-ISBN:1-4214-042-1, pp 1–6

    Google Scholar 

  • Cavalcanti A, Shirinzadeh B, Fukuda T, Ikeda S (2007) Hardware architecture for nanorobot application in cerebral aneurysm. 7th IEEE conference on Nanotechnology 2007, IEEE-NANO 2007, Hong-Kong, e-ISBN:978-1-4244-0607-4, pp 237–242

    Google Scholar 

  • Chandran KB (1992) Cardiovascular biomechanics (New York University Biomedical Engineering Series). New York University Press, pp 32–41

    Google Scholar 

  • Chiu PW, Lau JY, Ng EK, Lam CC, Hui M, To KF, Sung JJ, Chung SS (Sept, 2008) Closure of a gastrotomy after transgastric tubal ligation by using the Eagle Claw VII: a survival experiment in a porcine model (with video). Gastrointest Endosc 68(3):554–559. (Epub 2008 Jul 16)

    Article  Google Scholar 

  • Degani A, Choset H, Wolf A, Zenati MA (May, 2006) Highly articulated robotic probe for minimally invasive surgery. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’06). Orlando, Fla, USA, pp 4167–4172

    Google Scholar 

  • EndoWrist Instruments (n.d.) Intuitive Surgical Inc. http://www.intuitivesurgical.com/

  • Farritor SM, Lehman AC, Oleynkov D (2011) Miniature in vivo robots for notes. Surgical Robots. Springer, pp 123–138, ISBN: 978-1-4419-1126-1

    Google Scholar 

  • Fong DG, Ryou M, Pai RD, Tavakkolizadeh A, Rattner DW, Thompson CC (Oct, 2007) Transcolonic ventral wall hernia mesh fixation in a porcine model. Endoscopy 39(10):865–869

    Article  Google Scholar 

  • Forgione A (2009) In vivo microrobots for natural orifice transluminal surgery. Current status and future perspectives. Surgical Oncology xx:1–9

    Google Scholar 

  • Freitas RA Jr (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3(12):1–4

    Google Scholar 

  • Gerhardus D (July/Aug, 2003) Robot-assisted surgery. The future is here. J Healthcare Manage 48(4):242–251. http://www.entrepreneur.com/tradejournals/article/106226723_3.html

    Google Scholar 

  • Giakoumaki A, Pavlopoulos S, Koutsouris D (2004) A multiple watermarking scheme applied to medical image management. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society-EMBS, 5:3241–3244. San Francisco, CA, USA, September 2004

    Google Scholar 

  • Goicoechea J, Zamarreño CR, Matias IR, Arregui FJ (2007) Minimizing the photobleaching of self-assembled multilayers for sensor applications. Sens Actuator B-Chem 126(1):41–47. http://dx.doi.org/10.1016/j.snb.2006.10.037

    Article  Google Scholar 

  • Green ED, Olson MV (1990) Chromosomal region of the cystic-fibrosis gene in yeast artificial chromosomes—a model for human genome mapping. Science 250(4977):94–98

    Article  Google Scholar 

  • Guthart GS, Salisbury J, Jr. (2000) The IntuitiveTM telesurgery system: overview and application. IEEE International Conference on Robotics and Automation. Proceedings ICRA 2000, San Fransisco CA, ISBN: 0-7803-5886-4, pp 618–621 v.1

    Google Scholar 

  • Harada Kanako, Oetomo Denny, Susilo Ekawahyu, Menciassi Arianna, Daney David, Merlet Jean-Pierre (2010) A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results. Robotica 28:171–183. (© Cambridge University Press 2009)

    Article  Google Scholar 

  • Hess MW (2007) Cryopreparation methodology for plant cell biology. Cell Electron Microsc 79:57–100

    Article  Google Scholar 

  • http://biomed.brown.edu/Courses/BI108/BI108_2005_Groups/04/davinci.html

  • http://www.intuitivessurgical.com/products

  • http://www.usgimedical.com/eos/index.htm

  • Huang W-H, Ai F, Wang Z-L, Cheng J-K (April, 2008) Recent advances in single cell analysis using capillary electrophoresis and microfluidic devices. J Chromatogr B Analyt Technol Biomed Life Sci 866(1–2):104–122

    Article  Google Scholar 

  • Istepanian R, Kyriacou E, Pavlopoulos S, Koutsouris D (2001) Effect of wavelet compression methodologies on data transmission in a multi-purpose wireless telemedicine system with mobile communication link support. J Telemed Telecare 7(1):14–16

    Google Scholar 

  • Kaehler G, Grobholz R, Langner C, Suchan K, Post S (Jan, 2006) A new technique of endoscopic full-thickness resection using a flexible stapler. Endoscopy 38(1):86–89

    Article  Google Scholar 

  • Kirschniak A, Traub F, Kueper MA, Stuker D, Konigsrainer A, Kratt T (Dec, 2007) Endoscopic treatment of gastric perforation caused by acute necrotizing pancreatitis using over-the-scope clips: a case report. Endoscopy 39(12):1100–1102

    Article  Google Scholar 

  • Knight CG, Lorincz A, Cao A, Gidell K, Klein MD, Langenburg SE (April, 2005) Computer-assisted, robot-enhanced open microsurgery in an animal model. J Laparoendosc Adv Surg Tech 15(2):182–185

    Article  Google Scholar 

  • Kostantinidis K (2008) Advanced of robotic surgery. http://robotic.kkonstantinidis.com/index.php/2008-10-23-16-20-35

  • Lanfranco A, Castellanos A, Desai J, Meyers W (Jan, 2004) Robotic surgery: a current perspective. Annal Surg 239(1):14–21. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1356187

    Article  Google Scholar 

  • Lamprinos IE, Prentza A, Sakka E, Koutsouris D (2005) Energy-efficient MAC protocol for patient personal area networks. In: Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society-EMBS, article Nr 1011, 4:3799–3802. Shanghai China, September, 2005

    Google Scholar 

  • Laparoscopic Surgery http://en.wikipedia.org/wiki/Laparoscopic_surgery

  • Leary SP, Liu CY, Apuzzo MLI (2006a) Toward the emergence of nanoneurosurgery: Part III—nanomedicine: targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneuro- surgery. Neurosurgery 58(6):1009–1025. http://dx.doi.org/10.1227/01.NEU.0000217016.79256.16

    Article  Google Scholar 

  • Leary SP, Liu CY, Apuzzo MLJ (2006b) Toward the emergence of nanoneurosurgery. Neurosurgery 58:1009–1026

    Article  Google Scholar 

  • Leis A, Rockel B, Andrees L, Baumeister W (Feb, 2009) Visualizing cellsat the nanoscale. Trends Biochem Sci 34(2):60–70

    Article  Google Scholar 

  • Lima E, Henriques-Coelho T, Rolanda C, Pego JM, Silva D, Carvalho JL, Correia-Pinto J (June, 2007) Transvesical thoracoscopy: a natural orifice translumenal endoscopic approach for thoracic surgery. Surg Endosc 21(6):854–858

    Article  Google Scholar 

  • Lima E, Rolanda C, Pego JM et al (2006) Transvesical endoscopic peritoneoscopy: a novel 5 mm port for intra-abdominal scarless surgery. J Urol 176:802–805

    Article  Google Scholar 

  • Matthews BD, Walsh RM, Kercher KW, Sing RF, Pratt BL, Answini GA, Heniford BT (May, 2002) Laparoscopic vs open resection of gastric stromal tumors. Surg Endosc 16(5):803–807. (Epub 2002 Feb 8)

    Article  Google Scholar 

  • Merrifield BF, Wagh MS, Thompson CC (April, 2006) Peroral transgastric organ resection: a feasibility study in pigs. Gastrointest Endosc 63(4):693–697

    Article  Google Scholar 

  • Metzelder M, Vieten G, Gosemann JH, Ure B, Kuebler JF (Dec, 2009) Endoloop closure of the urinary bladder is safe and efficient in female piglets undergoing transurethral NOTES nephrectomy. Eur J Pediatr Surg 19(6):362–365

    Article  Google Scholar 

  • Mobius W (2009) Cryopreparation of biological specimens for immunoelectron microscopy. Annal Anat 191(3):231–247

    Article  Google Scholar 

  • Morris Β (Sept, 2005) Robotic surgery: applications, limitations, and impact on surgical education. Med Gen Med 7(3):72. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1681689

    Google Scholar 

  • Onion Am (2006) RoboSnail tackles any terrain—slime not included. ABC News. http://abcnews.go.com/Technology/story?id=1525599

  • Onion Am. RoboSnail tackles any terrain- slime not included, abcNEWS 2006, http://abcnews.go.com/Technology/story?id=1525599

  • PillCam SB, Given Imaging Ltd. (2009) Innovative Solutions-Capsule Endoscopy. http://www.givenimaging.com

  • Pham BV, Raju GS, Ahmed I, Brining D, Chung S, Cotton P, Gostout CJ, Hawes RH, Kalloo AN, Kantsevoy SV, Pasricha PJ (July, 2006) Immediate endoscopic closure of colon perforation by using a prototype endoscopic suturing device: feasibility and outcome in a porcine model (with video). Gastrointest Endosc 64(1):113–119

    Article  Google Scholar 

  • Pohl FM, Jovin TM (1972) Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J Mol Biol 67:375–396. http://dx.doi.org/10.1016/0022-2836(7290457–3)

    Article  Google Scholar 

  • Raju GS, Fritscher-Ravens A, Rothstein RI, Swain P, Gelrud A, Ahmed I, Gomez G, Winny M, Sonnanstine T, Bergstrom M, Park PO (Aug, 2008) Endoscopic closure of colon perforation compared to surgery in a porcine model: a randomized controlled trial (with videos). Gastrointest Endosc 68(2):324–332. (Epub 2008 Jun 17. Erratum in: Gastrointest Endosc. 2008 Sep;68(3):616)

    Article  Google Scholar 

  • Raju GS, Pham B, Xiao SY, Brining D, Ahmed I (Nov, 2005) A pilot study of endoscopic closure of colonic perforations with endoclips in a swine model. Gastrointest Endosc 62(5):791–795

    Article  Google Scholar 

  • Rentschler ME, Dumpert Jason, Platt SR, Oleynikov D, Farritor SM, Iagnemma K (2006) Mobile in vivo biopsy robot. Proceedings 2006 IEEE International Conference on Robotics and Automation 2006, ICRA 2006,Orlando FL, ISBN: 0-7803-9505-0, pp 4155–4160

    Google Scholar 

  • Rentschler ME, Platt SR, Berg K, Dumpert J, Oleynikov D, Farritor SM (Jan 2008) Miniature in vivo robots for remote and harsh environments. IEEE Trans Inf Technol Biomed 12(1):66–75

    Google Scholar 

  • Richter K, Gngi H, Dubochet J (July, 1991) A model for cryosectioning based on the morphology of vitrified ultrathin sections. J Microsc 163(1):19–28

    Article  Google Scholar 

  • Robotic Surgery http://library.thinkquest.org/03oct/00760

  • Rolanda C, Lima E, Silva D, Moreira I, Pego JM, Macedo G, Correia-Pinto J (Dec, 2009) In vivo assessment of gastrotomy closure with over-the-scope clips in an experimental model for varicocelectomy (with video). Gastrointest Endosc 70(6):1137–1145. (Epub 2009 Jul 31)

    Article  Google Scholar 

  • Romanelli JR, Mark L, Omotosho PA (2008) Single-port laparoscopic cholecystectomy with the TriPort system: a case report. Surg Innov 15:223–228

    Article  Google Scholar 

  • Sauer C, Stanacevic M, Cauwenberghs G, Thakor N (2005) Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans Circ Sys 52:2605–2613. http://dx.doi.org/10.1109/TCSI.2005.858183

    Article  Google Scholar 

  • Schurr MO, Arezzo A, Ho CN, Anhoeck G, Buess G, Di Lorenzo N (2008) The OTSC clip for endoscopic organ closure in NOTES: device and technique. Minim Invasive Ther Allied Technol 17(4):262–266

    Article  Google Scholar 

  • Seeman NC (2003) DNA in a material world. Nature 421:427–431. http://dx.doi.org/10.1038/nature01406

    Article  Google Scholar 

  • Shen Y, Nakajima M, Ahmad MR, Fukuda T, Kojima S, Homma M (2009) Single cell injection using nano pipette via nanorobotic manipulation system inside E-SEM. 9th IEEE Conference on Nanotechnology, IEEE-NANO 2009, Genoa, e-ISBN: 978-981-08-3694-8, pp 518–521

    Google Scholar 

  • Sherwinter DA, Eckstein JG (July, 2009) Feasibility study of natural orifice transluminal endoscopic surgery inguinal hernia repair. Gastrointest Endosc 70(1):126–130. (Epub 2009 Feb 27)

    Article  Google Scholar 

  • Singh G, Rice P, Mahajan RL, McIntosh JR (March, 2009) Fabrication and characterization of a carbon nanotube-based nanoknife. Nanotechnology 20(9):095701

    Article  Google Scholar 

  • Stracke R, Böhm KJ, Burgold J, Schacht H, Unger E (2000) Physical and technical parameters determining the functioning of a kinesin- based cell-free motor system. Nanotechnology 11(2):52–56. http://dx.doi.org/10.1088/0957-4484/11/2/302

    Article  Google Scholar 

  • Sumiyama K, Gostout CJ, Rajan E, Bakken TA, Deters JL, Knipschield MA (Jan, 2007) Endoscopic full-thickness closure of large gastric perforations by use of tissue anchors. Gastrointest Endosc 65(1):134–139

    Article  Google Scholar 

  • Swanstrom LL (Nov, (2006) Current technology development for natural orifice transluminal endoscopic surgery, (Article in Spanish). Cir Esp 80(5):283–288

    Article  Google Scholar 

  • The Incisionless Operating Platform, USGI Medical Inc. http://www.usgimedical.com/eos/index.htm

  • The daVinci Surgical System, Intuitive Surgical Inc. http://www.intuitivesurgical.com/

  • Tiwari MM, Reynoso JF, Lehman AC, Tsang AW, Farritor SM, Oleynikov Dmitry (27 June, 2010) In vivo miniature robots for natural orifice surgery: state of the art and future perspectives. World J Gastrointest Surg 2(6):217–223

    Article  Google Scholar 

  • Vadali Shanthi MS (2007) Prospects for medical robots. AZojono: J Nanotechno 3:1–9

    Google Scholar 

  • von Delius S, Gillen S, Doundoulakis E, Schneider A, Wilhelm D, Fiolka A, Wagenpfeil S, Schmid RM, Feussner H, Meining A (Nov, 2008) Comparison of transgastric access techniques for natural orifice transluminal endoscopic surgery. Gastrointest Endosc 68(5):940–947. (Epub 2008 Jun 17)

    Article  Google Scholar 

  • Walid MS, Heaton RL (2010) Laparoscopy-to-laparotomy quotient in obstetrics and gynecology residency programs. Arch Gyn Ob 283(5):1027–1031

    Article  Google Scholar 

  • Westebring-van der Putten EP, Goossens RHM, Jakimowicz JJ, Dankelman J (2008) Haptics in minimally invasive surgery—a review. Minim Invasive Ther 17(1):3–16

    Article  Google Scholar 

  • Wilhelm D, Meining A, von Delius S, Fiolka A, Can S, Hann vonWC, Schneider A, Feussner H (May, 2007) An innovative, safe and sterile sigmoid access (ISSA) for NOTES. Endoscopy 39(5):401–406

    Article  Google Scholar 

  • Wright EM, Sampedro AD, Hirayama BA, Koepsell H, Gorboulev V, Osswald C (2005) Novel glucose sensor. United States patent US 0267154

    Google Scholar 

  • The daVinci Surgical System, Intuitive Surgical Inc. www.intuitivesurgical.com/products/davinci_surgical_system

  • Yonezawa J, Kaise M, Sumiyama K, Goda K, Arakawa H, Tajiri H (2006) A novel double-channel therapeutic endoscope (“R-scope”) facilitates endoscopic submucosal dissection of superficial gastric neoplasms. Endoscopy 38(10):1011–1015

    Article  Google Scholar 

  • Zygomalas A, Giokas K, Koutsouris, D (2012) “Modular assembly micro-robots for Natural Orifice Transluminal Endoscopic Surgery, the future of minimal invasive surgery”, International Journal of Reliable and Quality e-Healthcare, vol. 1 (4), pp 43-55

    Google Scholar 

  • Zygomalas A, Kehagiaς I, Giokas K, Koutsouris D (2014) Miniature surgical robots in the era of NOTES and LESS: dream or reality? Surg Innov. doi:10.1177/1553350614532549, published οnline 14 May 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra Iliopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iliopoulou, D. et al. (2014). Development of Collaborative Modular Assembly Micro-Robot Colonies for Use in Natural Orifice Transluminal Endoscopic Surgery: The LABYRINTH Approach. In: Koutsouris, DD., Lazakidou, A. (eds) Concepts and Trends in Healthcare Information Systems. Annals of Information Systems, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-06844-2_11

Download citation

Publish with us

Policies and ethics