Skip to main content

Counter-bDM: A Provably Secure Family of Multi-Block-Length Compression Functions

  • Conference paper
Progress in Cryptology – AFRICACRYPT 2014 (AFRICACRYPT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8469))

Included in the following conference series:

Abstract

Block-cipher-based compression functions serve an important purpose in cryptography since they allow to turn a given block cipher into a one-way hash function. While there are a number of secure double-block-length compression functions, there is little research on generalized constructions. This paper introduces the Counter-bDM family of multi-block-length compression functions, which, to the best of our knowledge, is the first provably secure block-cipher-based compression function with freely scalable output size. We present generic collisionand preimage-security proofs for it, and compare our results with those of existing double-block-length constructions. Our security bounds show that our construction is competitive with the best collision- and equal to the best preimage-security bound of existing double-block-length constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armknecht, F., Fleischmann, E., Krause, M., Lee, J., Stam, M., Steinberger, J.: The Preimage Security of Double-Block-Length Compression Functions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 233–251. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE. Submission to NIST, Round 3 (2010)

    Google Scholar 

  3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. Ecrypt Hash Workshop (May 2007)

    Google Scholar 

  4. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to NIST, Round 2 (2009)

    Google Scholar 

  5. Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Meyer, C., Matyas, S.: Secure Program Load With Manipulation Detection Code (1988)

    Google Scholar 

  7. Chang, D., Nandi, M., Lee, J., Sung, J., Hong, S., Lim, J., Park, H., Chun, K.: Compression Function Design Principles Supporting Variable Output Lengths from a Single Small Function. IEICE Transactions 91-A(9), 2607–2614 (2008)

    Article  Google Scholar 

  8. Coppersmith, D., Pilpel, S., Meyer, C.H., Matyas, S.M., Hyden, M.M., Oseas, J., Brachtl, B., Schilling, M.: Data Authentication Using Modification Dectection Codes Based on a Public One-Way Encryption Function. U.S. Patent No. 4,908,861 (March 13, 1990)

    Google Scholar 

  9. Ewan Fleischmann. Analysis and Design of Blockcipher Based Cryptographic Algorithms. PhD thesis, Bauhaus-Universität Weimar (2013)

    Google Scholar 

  10. Fleischmann, E., Forler, C., Gorski, M., Lucks, S.: Collision-Resistant Double-Length Hashing. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 102–118. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Fleischmann, E., Forler, C., Lucks, S.: The Collision Security of MDC-4. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 252–269. Springer, Heidelberg (2012)

    Google Scholar 

  12. Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: Weimar-DM: A Highly Secure Double-Length Compression Function. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 152–165. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Fleischmann, E., Gorski, M., Lucks, S.: On the Security of Tandem-DM. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 84–103. Springer, Heidelberg (2009)

    Google Scholar 

  14. Fleischmann, E., Gorski, M., Lucks, S.: Security of Cyclic Double Block Length Hash Functions. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 153–175. Springer, Heidelberg (2009)

    Google Scholar 

  15. Hattori, M., Hirose, S., Yoshida, S.: Analysis of Double Block Length Hash Functions. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 290–302. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Hirose, S.: Provably Secure Double-Block-Length Hash Functions in a Black-Box Model. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Hohl, W., Lai, X., Meier, T., Waldvogel, C.: Security of Iterated Hash Functions Based on Block Ciphers. In: Stinson, D.R. (ed.) Advances in Cryptology - CRYPTO 1993. LNCS, vol. 773, pp. 379–390. Springer, Heidelberg (1994)

    Google Scholar 

  20. ISO/IEC. ISO DIS 10118-2: Information technology - Security techniques - Hash-functions, Part 2: Hash-functions using an n-bit block cipher algorithm. First released in 1992 (2000)

    Google Scholar 

  21. Knudsen, L.R., Lai, X., Preneel, B.: Attacks on Fast Double Block Length Hash Functions. J. Cryptology 11(1), 59–72 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Knudsen, L.R., Muller, F.: Some Attacks Against a Double Length Hash Proposal. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 462–473. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Krause, M., Armknecht, F., Fleischmann, E.: Preimage Resistance Beyond the Birthday Bound: Double-Length Hashing Revisited. IACR Cryptology ePrint Archive 2010, 519 (2010)

    Google Scholar 

  24. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A. (ed.) Advances in Cryptology - EUROCRYPT1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

    Google Scholar 

  25. Lee, J.: Provable Security of the Knudsen-Preneel Compression Functions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 504–525. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Lee, J., Kwon, D.: The Security of Abreast-DM in the Ideal Cipher Model. Cryptology ePrint Archive, Report 2009/225 (2009), http://eprint.iacr.org/

  27. Lee, J., Kwon, D.: The Security of Abreast-DM in the Ideal Cipher Model. IEICE Transactions  94-A(1), 104–109 (2011)

    Article  Google Scholar 

  28. Lee, J., Stam, M.: MJH: A Faster Alternative to MDC-2. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Lee, J., Stam, M., Steinberger, J.: The Collision Security of Tandem-DM in the Ideal Cipher Model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 561–577. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  30. Lee, J., Steinberger, J.P.: Multiproperty-Preserving Domain Extension Using Polynomial-Based Modes of Operation. IEEE Transactions on Information Theory 58(9), 6165–6182 (2012)

    Article  MathSciNet  Google Scholar 

  31. Lucks, S.: A Collision-Resistant Rate-1 Double-Block-Length Hash Function. In: Symmetric Cryptography (2007)

    Google Scholar 

  32. Luo, Y., Lai, X.: Attacks On a Double Length Blockcipher-based Hash Proposal. IACR Cryptology ePrint Archive 2011, 238 (2011)

    Google Scholar 

  33. Rabin, M.: Digitalized Signatures. In: De Millo, R., Dobkin, D., Jones, A., Lipton, R. (eds.) Foundations of Secure Computation, pp. 155–168. Academic Press (1978)

    Google Scholar 

  34. Mennink, B.: Optimal Collision Security in Double Block Length Hashing with Single Length Key. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 526–543. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  35. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) Advances in Cryptology - CRYPT0 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

    Google Scholar 

  36. Nandi, M., Lee, W.I., Sakurai, K., Lee, S.-J.: Security Analysis of a 2/3-Rate Double Length Compression Function in the Black-Box Model. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 243–254. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  37. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: Skein Source Code and Test Vectors, http://www.skein-hash.info/downloads

  38. Özen, O., Stam, M.: Another Glance at Double-Length Hashing. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 176–201. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  39. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining Compression Functions and Block Cipher-Based Hash Functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 315–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  40. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  41. Rogaway, P., Steinberger, J.P.: Constructing Cryptographic Hash Functions from Fixed-Key Blockciphers. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 433–450. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  42. Satoh, T., Haga, M., Kurosawa, K.: Towards Secure and Fast Hash Functions. TIEICE: IEICE Transactions on Communications/Electronics/Information and Systems (1999)

    Google Scholar 

  43. Stam, M.: Beyond Uniformity: Better Security/Efficiency Tradeoffs for Compression Functions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  44. Stam, M.: Blockcipher-Based Hashing Revisited. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  45. Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal Cipher Model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  46. Robert, S., Winternitz: A Secure One-Way Hash Function Built from DES. In: IEEE Symposium on Security and Privacy, pp. 88–90 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J. (2014). Counter-bDM: A Provably Secure Family of Multi-Block-Length Compression Functions. In: Pointcheval, D., Vergnaud, D. (eds) Progress in Cryptology – AFRICACRYPT 2014. AFRICACRYPT 2014. Lecture Notes in Computer Science, vol 8469. Springer, Cham. https://doi.org/10.1007/978-3-319-06734-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06734-6_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06733-9

  • Online ISBN: 978-3-319-06734-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics