Skip to main content

Defence, Symbiosis and ABCG Transporters

  • Chapter
  • First Online:
Plant ABC Transporters

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 22))

Abstract

Plant genomes encode more than 100 ATP-binding cassette (ABC) transporters, a number far exceeding those of other organisms. The membrane-bound ABC transporters belonging to the G subfamily (ABCGs) can be categorised by their distinctive topology and taxa distribution. ABCGs form the largest known subfamily of ABC proteins, with 43 and 50 members in Arabidopsis and rice, respectively. Collected experimental data have revealed the great functional diversity of these proteins. The substrates known to be transferred by ABCGs, usually through the plasma membrane, include surface lipids, plant hormones and secondary metabolites. Therefore, ABCGs are recognised as being important for plant development as well as interactions with the environment. Historically, certain members of the ABCG subfamily were considered as proteins that evolved to be involved in pathogenic processes or biotic stress responses. However, recent discoveries have demonstrated that the function of ABCGs in plants extends beyond simply the secretion of anti-microbial molecules. Equally important as defence against invaders are interactions of plants with microorganisms that are beneficial to both partners. Such beneficial interactions include (1) symbiotic associations with fungi of the phylum Glomeromycota, also known as arbuscular mycorrhizae (AM) and (2) legume–rhizobia symbiosis (LRS). We have only just begun to discover that plant ABC transporters are important modulators of symbioses, but how they participate in these processes is unclear. Here, we provide basic information regarding the members of the G subfamily of ABC transporters and position them in the context of the defence reactions and symbiotic associations of plants, with special emphasis on legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghnoum R, Niks RE (2010) Specificity and levels of nonhost resistance to nonadapted Blumeria graminis forms in barley. New Phytol 185(1):275–284. doi:10.1111/j.1469-8137.2009.03039.x

    Article  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827. doi:10.1038/nature03608

    Article  CAS  PubMed  Google Scholar 

  • Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S et al (2012) AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol 22(13):1207–1212. doi:10.1016/j.cub.2012.04.064

    Article  CAS  PubMed  Google Scholar 

  • Anjard C, Loomis WF, Dictyostelium Sequencing C (2002) Evolutionary analyses of ABC transporters of Dictyostelium discoideum. Eukaryot Cell 1(4):643–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ayliffe M, Devilla R, Mago R, White R, Talbot M et al (2011) Nonhost resistance of rice to rust pathogens. Mol Plant-Microbe Interact 24(10):1143–1155. doi:10.1094/MPMI-04-11-0100

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Pena C, Jasinski M et al (2008) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146(2):762–771. doi:10.1104/pp. 107.109587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH et al (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151(4):2006–2017. doi:10.1104/pp. 109.147462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Banasiak J, Biala W, Staszkow A, Swarcewicz B, Kepczynska E et al (2013) A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J Exp Bot 64(4):1005–1015. doi:10.1093/jxb/ers380

    Article  CAS  PubMed  Google Scholar 

  • Benedito VA, Li H, Dai X, Wandrey M, He J et al (2010) Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiol 152(3):1716–1730. doi:10.1104/pp. 109.148684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A et al (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4(7):e226. doi:10.1371/journal.pbio.0040226

    Article  PubMed Central  PubMed  Google Scholar 

  • Bienert MD, Siegmund SE, Drozak A, Trombik T, Bultreys A et al (2012) A pleiotropic drug resistance transporter in Nicotiana tabacum is involved in defense against the herbivore Manduca sexta. Plant J 72(5):745–757. doi:10.1111/j.1365-313X.2012.05108.x

    Article  CAS  PubMed  Google Scholar 

  • Bird D, Beisson F, Brigham A, Shin J, Greer S et al (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52(3):485–498. doi:10.1111/j.1365-313X.2007.03252.x

    Article  CAS  PubMed  Google Scholar 

  • Bultreys A, Trombik T, Drozak A, Boutry M (2009) Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens. Mol Plant Pathol 10(5):651–663. doi:10.1111/j.1364-3703.2009.00562.x

    Article  CAS  PubMed  Google Scholar 

  • Campbell EJ, Schenk PM, Kazan K, Penninckx IA, Anderson JP et al (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133(3):1272–1284. doi:10.1104/pp. 103.024182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cannon SB (2013) The model legume genomes. Methods Mol Biol 1069:1–14. doi:10.1007/978-1-62703-613-9_1

    Article  PubMed  Google Scholar 

  • Choi H, Jin JY, Choi S, Hwang JU, Kim YY et al (2011) An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J 65(2):181–193. doi:10.1111/j.1365-313X.2010.04412.x

    Article  CAS  PubMed  Google Scholar 

  • Cock JM, Sterck L, Rouze P, Scornet D, Allen AE et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465(7298):617–621. doi:10.1038/nature09016

    Article  CAS  PubMed  Google Scholar 

  • Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580(4):1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Crouzet J, Roland J, Peeters E, Trombik T, Ducos E et al (2013) NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport. Plant Mol Biol 82(1–2):181–192. doi:10.1007/s11103-013-0053-0

    Article  CAS  PubMed  Google Scholar 

  • Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA et al (2012) Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiol 159(4):1671–1685. doi:10.1104/pp. 112.195990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Damiani I, Baldacci-Cresp F, Hopkins J, Andrio E, Balzergue S et al (2012) Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes. New Phytol 194(2):511–522. doi:10.1111/j.1469-8137.2011.04046.x

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833. doi:10.1038/35081161

    Article  CAS  PubMed  Google Scholar 

  • Davis AS, Hill JD, Chase CA, Johanns AM, Liebman M (2012) Increasing cropping system diversity balances productivity, profitability and environmental health. PloS One 7(10):e47149. doi:10.1371/journal.pone.0047149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dharmatilake AJ, Bauer WD (1992) Chemotaxis of Rhizobium meliloti towards Nodulation Gene-Inducing Compounds from Alfalfa roots. Appl Environ Microbiol 58(4):1153–1158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon RA, Sumner LW (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131(3):878–885. doi:10.1104/pp. 102.017319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dor E, Joel DM, Kapulnik Y, Koltai H, Hershenhorn J (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234(2):419–427. doi:10.1007/s00425-011-1452-6

    Article  CAS  PubMed  Google Scholar 

  • Dou XY, Yang KZ, Zhang Y, Wang W, Liu XL et al (2011) WBC27, an adenosine tri-phosphate-binding cassette protein, controls pollen wall formation and patterning in Arabidopsis. J Integr Plant Biol 53(1):74–88. doi:10.1111/j.1744-7909.2010.01010.x

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn H, Klinghammer M, Becht P, Tenhaken R (2006) Isolation of a novel ABC-transporter gene from soybean induced by salicylic acid. J Exp Bot 57(10):2193–2201. doi:10.1093/jxb/erj179

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146(2):387–402. doi:10.1104/pp. 107.108431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69(3):510–528. doi:10.1111/j.1365-313X.2011.04810.x

    Article  CAS  PubMed  Google Scholar 

  • Grec S, Vanham D, de Ribaucourt JC, Purnelle B, Boutry M (2003) Identification of regulatory sequence elements within the transcription promoter region of NpABC1, a gene encoding a plant ABC transporter induced by diterpenes. Plant J 35(2):237–250

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M et al (2009) Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol 183(1):53–61. doi:10.1111/j.1469-8137.2009.02871.x

    Article  CAS  PubMed  Google Scholar 

  • Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H et al (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69(5):906–920. doi:10.1111/j.1365-313X.2011.04842.x

    Article  CAS  PubMed  Google Scholar 

  • Hartmann K, Peiter E, Koch K, Schubert S, Schreiber L (2002) Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis. Planta 215(1):14–25. doi:10.1007/s00425-001-0715-z

    Article  CAS  PubMed  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63(9):3429–3444. doi:10.1093/jxb/err430

    Article  CAS  PubMed  Google Scholar 

  • Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N et al (2011) Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157(4):2023–2043. doi:10.1104/pp. 111.186635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J et al (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13(5):1095–1107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jasinski M, Banasiak J, Radom M, Kalitkiewicz A, Figlerowicz M (2009) Full-size ABC transporters from the ABCG subfamily in Medicago truncatula. Mol Plant-Microbe Interact 22(8):921–931. doi:10.1094/MPMI-22-8-0921

    Article  CAS  PubMed  Google Scholar 

  • Jaulneau V, Cazaux M, Wong Sak Hoi J, Fournier S, Esquerre-Tugaye MT et al (2010) Host and nonhost resistance in Medicago-Colletotrichum interactions. Mol Plant-Microbe Interact 23(9):1107–1117. doi:10.1094/MPMI-23-9-1107

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. doi:10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Hwang JU, Lee M, Kim YY, Assmann SM et al (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107(5):2355–2360. doi:10.1073/pnas.0909222107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T et al. (2011) Plant ABC Transporters. The Arabidopsis book/American Society of Plant Biologists 9:e0153. doi:10.1199/tab.0153

  • Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7(11):511–518

    Article  CAS  PubMed  Google Scholar 

  • Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E et al (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47(3):309–318. doi:10.1093/pcp/pcj001

    Article  CAS  PubMed  Google Scholar 

  • Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci U S A 84(21):7428–7432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ et al (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11(4):263–274

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360–1363. doi:10.1126/science.1166453

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M et al (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483(7389):341–344. doi:10.1038/nature10873

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E et al (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107(5):2361–2366. doi:10.1073/pnas.0912516107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Limpens E, Moling S, Hooiveld G, Pereira PA, Bisseling T et al. (2013) Cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PloS one 8(5):e64377. doi:10.1371/journal.pone.0064377

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opini Plant Biol 11(4):404–411. doi:10.1016/j.pbi.2008.04.004

    Article  CAS  Google Scholar 

  • Liu J, Blaylock LA, Endre G, Cho J, Town CD et al (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15(9):2106–2123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lozovaya VV, Lygin AV, Zernova OV, Li S, Hartman GL et al (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiology Biochem 42(7–8):671–679. doi:10.1016/j.plaphy.2004.06.007

    Article  CAS  Google Scholar 

  • McFarlane HE, Shin JJ, Bird DA, Samuels AL (2010) Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. Plant Cell 22(9):3066–3075. doi:10.1105/tpc.110.077974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moons A (2008) Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Planta 229(1):53–71. doi:10.1007/s00425-008-0810-5

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina M, Farag MA, Sumner LW, Tang Y, Liu CJ et al (2007) Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci U S A 104(46):17909–17915. doi:10.1073/pnas.0708697104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbio 11(4):252–263. doi:10.1038/nrmicro2990

    Article  CAS  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546. doi:10.1146/annurev.arplant.59.032607.092839

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144. doi:10.1146/annurev-genet-110410-132549

    Article  CAS  PubMed  Google Scholar 

  • Ortu G, Balestrini R, Pereira PA, Becker JD, Kuster H et al (2012) Plant genes related to gibberellin biosynthesis and signaling are differentially regulated during the early stages of AM fungal interactions. Mol Plant 5(4):951–954. doi:10.1093/mp/sss027

    Article  CAS  PubMed  Google Scholar 

  • Paape T, Zhou P, Branca A, Briskine R, Young N et al (2012) Fine-scale population recombination rates, hotspots, and correlates of recombination in the Medicago truncatula genome. Genome Biol Evol 4(5):726–737. doi:10.1093/gbe/evs046

    Article  PubMed Central  PubMed  Google Scholar 

  • Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB et al (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145(4):1345–1360. doi:10.1104/pp. 107.105676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775. doi:10.1038/nrmicro1987

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316. doi:10.1038/nchembio.164

    Article  CAS  PubMed  Google Scholar 

  • Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trends Microbiol 14(4):161–168. doi:10.1016/j.tim.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  • Quilichini TD, Friedmann MC, Samuels AL, Douglas CJ (2010) ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiol 154(2):678–690. doi:10.1104/pp. 110.161968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375. doi:10.1146/annurev.arplant.57.032905.105406

    Article  CAS  PubMed  Google Scholar 

  • Sasabe M, Toyoda K, Shiraishi T, Inagaki Y, Ichinose Y (2002) cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene. FEBS Lett 518(1–3):164–168

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183. doi:10.1038/nature08670

    Article  CAS  PubMed  Google Scholar 

  • Seo S, Gomi K, Kaku H, Abe H, Seto H et al (2012) Identification of natural diterpenes that inhibit bacterial wilt disease in tobacco, tomato and Arabidopsis. Plant Cell Physiol 53(8):1432–1444. doi:10.1093/pcp/pcs085

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parniske M (2012) Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr Opin Plant Biol 15(4):444–453. doi:10.1016/j.pbi.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  • Smit G, Puvanesarajah V, Carlson RW, Barbour WM, Stacey G (1992) Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon. J Biol Chem 267(1):310–318

    CAS  PubMed  Google Scholar 

  • Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A et al (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant cell 18(3):731–746. doi:10.1105/tpc.105.038372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D et al (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiol 139(1):341–352. doi:10.1104/pp. 105.062372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugiyama A, Shitan N, Sato S, Nakamura Y, Tabata S et al (2006) Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus: comparison with Arabidopsis ABC protein family. DNA Res 13(5):205–228. doi:10.1093/dnares/dsl013

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding cassette-type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium symbiosis. Plant Physiol 144(4):2000–2008. doi:10.1104/pp. 107.096727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K (2008) Signaling from soybean roots to rhizobium: an ATP-binding cassette-type transporter mediates genistein secretion. Plant Signal Behav 3(1):38–40

    Article  PubMed Central  PubMed  Google Scholar 

  • Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH et al (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313(5791):1261–1266. doi:10.1126/science.1128796

    Article  CAS  PubMed  Google Scholar 

  • Underwood W, Somerville SC (2013) Perception of conserved pathogen elicitors at the plasma membrane leads to relocalization of the Arabidopsis PEN3 transporter. Proc Natl Acad Sci U S A 110(30):12492–12497. doi:10.1073/pnas.1218701110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van den Brule S, Muller A, Fleming AJ, Smart CC (2002) The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J: Cell Mol Biol 30(6):649–662

    Article  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C et al (2008) Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci 13(4):151–159. doi:10.1016/j.tplants.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  • Xin XF, Nomura K, Underwood W, He SY (2013) Induction and suppression of PEN3 focal accumulation during Pseudomonas syringae pv. tomato DC3000 infection of Arabidopsis. Mol Plant Microbe Interact 26(8):861–867. doi:10.1094/MPMI-11-12-0262-R

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Bharti AK (2012) Genome-enabled insights into legume biology. Annu Rev Plant Biol 63:283–305. doi:10.1146/annurev-arplant-042110-103754

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524. doi:10.1038/nature10625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22(5):1483–1497. doi:10.1105/tpc.110.074955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang R, Huang J, Zhu J, Xie X, Tang Q et al (2013) Isolation and characterization of a novel PDR-type ABC transporter gene PgPDR3 from Panax ginseng C.A. Meyer induced by methyl jasmonate. Mol Biol Rep 40(11):6195–6204. doi:10.1007/s11033-013-2731-z

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20(1):10–16. doi:10.1016/j.coi.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Robatzek S (2010) Pathogen-associated molecular pattern-triggered immunity: veni, vidi…? Plant Physiol 154(2):551–554. doi:10.1104/pp. 110.161547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Bednarek for comments. National Science Centre Grants supported this work (2011/03/B/NZ1/02840).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Jasiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Banasiak, J., Jasiński, M. (2014). Defence, Symbiosis and ABCG Transporters. In: Geisler, M. (eds) Plant ABC Transporters. Signaling and Communication in Plants, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-06511-3_9

Download citation

Publish with us

Policies and ethics