Skip to main content

Complex Conjugate Removal in SS Optical Coherence Tomography

  • Reference work entry
Optical Coherence Tomography

Abstract

The development of Fourier Domain OCT (FDOCT) systems significantly improved sensitivity and imaging speed and catalyzed the commercialization of OCT technology. However, the transition from time-domain to Fourier domain was not without cost. The complex conjugate ambiguity is a non-trivial artifact resulting from direct Fourier detection in FDOCT. While most FDOCT systems avoid this artifact by limiting their axial imaging range, complex conjugate removal (CCR) in swept-source OCT (SSOCT) seeks to suppress or eliminate the complex conjugate ambiguity. CCR for SSOCT, either by phase-shifting, heterodyning, or optical demodulation, increases the axial imaging range by a factor of 2 compared to conventional FDOCT. This technological development is important in many OCT applications, including ophthalmology since the increased imaging depth is necessary to visualize the entire anterior segment of the human eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. J.A. Izatt, M.R. Hee, E.A. Swanson, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch. Ophthalmol. 112, 1584–1589 (1994)

    Article  Google Scholar 

  3. F. Fercher, K. Hitzenberger, G. Kamp, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)

    Article  ADS  Google Scholar 

  4. G. Huasler, M.W. Lindner, Coherence radar and spectral radar – new tools for dermatological diagnosis. J. Biomed. Opt. 3(1), 21–31 (1998)

    Article  ADS  Google Scholar 

  5. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22(5), 340–342 (1997)

    Article  ADS  Google Scholar 

  6. F. Lexer, C.K. Hitzenberger, A.F. Fercher, M. Kulhavy, Wavelength-tuning of interferometry of intraocular distances. Appl. Optics 36(25), 6548–6553 (1997)

    Article  ADS  Google Scholar 

  7. M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)

    Article  ADS  Google Scholar 

  8. R. Leitgeb, C. Hitzenberger, A. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894 (2003)

    Article  ADS  Google Scholar 

  9. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)

    Article  ADS  Google Scholar 

  10. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt. Express 12(3), 367–376 (2004)

    Article  ADS  Google Scholar 

  11. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7(3), 457–463 (2002)

    Article  ADS  Google Scholar 

  12. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, A. Fercher, Ultrahigh resolution Fourier domain optical coherence tomography. Opt. Express 12(10), 2156–2165 (2004)

    Article  ADS  Google Scholar 

  13. J.A. Goldsmith, Y. Li, M.R. Chalita, V. Westphal, C.A. Patil, A.M. Rollins, J.A. Izatt, D. Huang, Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology 112(2), 238–244 (2005)

    Article  Google Scholar 

  14. M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112(10), 1734–1746 (2005)

    Article  Google Scholar 

  15. S.H. Yun, C. Boudoux, G.J. Tearney, B.E. Bouma, High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett. 28(20), 1981–1983 (2003)

    Article  ADS  Google Scholar 

  16. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, K. Hsu, Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express 13(9), 3513–3528 (2005)

    Article  ADS  Google Scholar 

  17. R. Huber, M. Wojtkowski, J.G. Fujimoto, J.Y. Jiang, A.E. Cable, Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 13(26), 10523–10538 (2005)

    Article  ADS  Google Scholar 

  18. Y. Yasuno, V.D. Madjarova, S. Makita, K. Chan, Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt. Express 13(26), 10652–10664 (2005)

    Article  ADS  Google Scholar 

  19. M.A. Choma, K. Hsu, J.A. Izatt, Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J. Biomed. Opt. 10(4), 44009 (2005)

    Article  Google Scholar 

  20. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, T. Yatagai, In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt. Express 15(10), 6121–6139 (2007)

    Article  ADS  Google Scholar 

  21. F.E. Robles, C. Wilson, G. Grant, A. Wax, Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics 5(12), 744–747 (2011)

    Article  ADS  Google Scholar 

  22. A. Wax, C. Yang, J.A. Izatt, Fourier-domain low-coherence interferometry for light-scattering spectroscopy. Opt. Lett. 28(14), 1230–1232 (2003)

    Article  ADS  Google Scholar 

  23. M.A. Choma, A.K. Ellerbee, C. Yang, T.L. Creazzo, J.A. Izatt, Spectral-domain phase microscopy. Opt. Lett. 30(10), 1162–1164 (2005)

    Article  ADS  Google Scholar 

  24. A.K. Ellerbee, T.L. Creazzo, J.A. Izatt, Investigating nanoscale cellular dynamics with cross-sectional spectral domain phase microscopy. Opt. Express 15(13), 8115–8124 (2007)

    Article  ADS  Google Scholar 

  25. E.J. McDowell, A.K. Ellerbee, M.A. Choma, B.E. Applegate, J.A. Izatt, Spectral domain phase microscopy for local measurements of cytoskeletal rheology in single cells. J. Biomed. Opt. 12(4), 044008 (2007)

    Article  ADS  Google Scholar 

  26. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A.F. Fercher, Full range complex spectral optical coherence tomography technique in eye imaging. Opt. Lett. 27(16), 1415–1417 (2002)

    Article  ADS  Google Scholar 

  27. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, I. Gorczyńska, Complex spectral OCT in human eye imaging in vivo. Opt. Commun. 229(1–6), 79–84 (2004)

    Article  ADS  Google Scholar 

  28. E. Götzinger, M. Pircher, R. Leitgeb, C. Hitzenberger, High speed full range complex spectral domain optical coherence tomography. Opt. Express 13(2), 583–594 (2005)

    Article  ADS  Google Scholar 

  29. J. Schmit, K. Creath, Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry. Appl. Optics 34(19), 3610–3619 (1995)

    Article  ADS  Google Scholar 

  30. R.A. Leitgeb, C.K. Hitzenberger, A.F. Fercher, T. Bajraszewski, Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography. Opt. Lett. 28(22), 2201–2203 (2003)

    Article  ADS  Google Scholar 

  31. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, T. Yatagai, One-shot-phase-shifting Fourier domain optical coherence tomography by reference wavefront tilting. Opt. Express 12(25), 6184–6191 (2004)

    Article  ADS  Google Scholar 

  32. Y.K. Tao, M. Zhao, J.A. Izatt, High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation. Opt. Lett. 32(20), 2918–2920 (2007)

    Article  ADS  Google Scholar 

  33. A.B.. Vakhtin, K.A. Peterson, D.J. Kane, Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram. Opt. Lett. 31(9), 1271–1273 (2006)

    Article  ADS  Google Scholar 

  34. R.A. Leitgeb, R. Michaely, T. Lasser, S.C. Sekhar, Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning. Opt. Lett. 32(23), 3453–3455 (2007)

    Article  ADS  Google Scholar 

  35. L. An, R.K. Wang, Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography. Opt. Lett. 32(23), 3423–3425 (2007)

    Article  ADS  Google Scholar 

  36. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, T. Yatagai, Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography. Appl. Optics 45(8), 1861–1865 (2006)

    Article  ADS  Google Scholar 

  37. H. Wang, Y. Pan, A.M. Rollins, Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch. Opt. Lett. 33(22), 2632–2634 (2008)

    Article  ADS  Google Scholar 

  38. A. Bachmann, R. Leitgeb, T. Lasser, Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution. Opt. Express 14(4), 1487–1496 (2006)

    Article  ADS  Google Scholar 

  39. R.K. Wang, In vivo full range complex Fourier domain optical coherence tomography. Appl. Phys. Lett. 90(5), 054103 (2007)

    Article  ADS  Google Scholar 

  40. A.M. Davis, M.A. Choma, J.A. Izatt, Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal. J. Biomed. Opt. 10(6), 064005 (2005)

    Article  ADS  Google Scholar 

  41. J. Zhang, J.S. Nelson, Z. Chen, Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator. Opt. Lett. 30(2), 147–149 (2005)

    Article  ADS  Google Scholar 

  42. J. Zhang, W. Jung, J. Nelson, Z. Chen, Full range polarization-sensitive Fourier domain optical coherence tomography. Opt. Express 12(24), 6033–6039 (2004)

    Article  ADS  Google Scholar 

  43. S. Yun, G. Tearney, J. de Boer, B. Bouma, Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Opt. Express 12(20), 4822–4828 (2004)

    Article  ADS  Google Scholar 

  44. S.-Y. Baek, O. Kwon, Y.-H. Kim, High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time. Jpn. J. Appl. Phys. 46(12), 7720–7723 (2007)

    Article  ADS  Google Scholar 

  45. A.-H. Dhalla, D. Nankivil, J.A. Izatt, Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival. Biomed. Opt. Express 3(3), 633–649 (2012)

    Article  Google Scholar 

  46. H.X. Jiang, J.Y. Lin, Mode spacing ‘anomaly’ in InGaN blue lasers. Appl. Phys. Lett. 74(8), 1066 (1999)

    Article  ADS  Google Scholar 

  47. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, J.A. Izatt, Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival. Opt. Lett. 37(11), 1883–1885 (2012)

    Article  ADS  Google Scholar 

  48. A.-H. Dhalla, J.A. Izatt, Complete complex conjugate resolved heterodyne swept source optical coherence tomography using a dispersive optical delay line: erratum. Biomed. Opt. Express 3(3), 630–632 (2012)

    Article  Google Scholar 

  49. M.V. Sarunic, B.E. Applegate, J.A. Izatt, Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography. Opt. Lett. 31(16), 2426–2428 (2006)

    Article  ADS  Google Scholar 

  50. M.A. Choma, C. Yang, J.A. Izatt, Instantaneous quadrature low-coherence interferometry with 3 × 3 fiber-optic couplers. Opt. Lett. 28(22), 2162–2164 (2003)

    Article  ADS  Google Scholar 

  51. M. Sarunic, M.A. Choma, C. Yang, J.A. Izatt, Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 × 3 fiber couplers. Opt. Express 13(3), 957–967 (2005)

    Article  ADS  Google Scholar 

  52. B.J. Vakoc, S.H. Yun, G.J. Tearney, B.E. Bouma, Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation. Opt. Lett. 31(3), 362–364 (2006)

    Article  ADS  Google Scholar 

  53. F.D.E. Fornel, M.P. Varnham, D.N. Payne, Fibre gyroscope with passive quadrature detection. Electron. Lett. 20(10), 399–401 (1984)

    Article  Google Scholar 

  54. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25(2), 114–116 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Carrasco-Zevallos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Carrasco-Zevallos, O., Izatt, J.A. (2015). Complex Conjugate Removal in SS Optical Coherence Tomography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_9

Download citation

Publish with us

Policies and ethics