Skip to main content

Dental OCT

  • Reference work entry
Optical Coherence Tomography
  • 9744 Accesses

Abstract

This chapter describes the applications of OCT for imaging in vivo dental and oral tissue. The oral cavity is a diverse environment that includes oral mucosa, gingival tissues, teeth and their supporting structures. Because OCT can image both hard and soft tissues of the oral cavity at high resolution, it offers the unique capacity to identity dental disease before destructive changes have progressed. OCT images depict clinically important anatomical features such as the location of soft tissue attachments, morphological changes in gingival tissue, tooth decay, enamel thickness and decay, as well as the structural integrity of dental restorations. OCT imaging allows for earlier intervention than is possible with current diagnostic modalities.

We will address all the anatomical structures within the oral cavity that are accessible with OCT technology, including the teeth, periodontal tissues, and oral mucosa. A brief review of normal oral structures will be followed by a summary of the pathologies affecting each structure, a discussion of existing diagnostic tools, and an overview of diagnostic usage of OCT in each structure. In the final section, we will discuss the potential use of OCT in dentistry in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.W. Colston, M.J. Everett, L.B. DaSilva, L.L. Otis, P. Stroeve, H. Nathel, Imaging of hard and soft tissue in the oral cavity by optical coherence tomography. Appl. Optics 37(16), 3582–3585 (1998)

    Article  ADS  Google Scholar 

  2. B.W. Colston Jr., S. Sathyam, L.B. DaSilva, M.J. Everett, P. Stroeve, L.L. Otis, Dental OCT. Opt. Express 3, 230–238 (1998)

    Article  ADS  Google Scholar 

  3. L.L. Otis, M.J. Everett, U.S. Sathyam, B.W. Colston Jr., Optical coherence tomography: a new imaging technology for dentistry. J. Am. Dent. Assoc. 131(4), 511–514 (2000)

    Article  Google Scholar 

  4. A. Nanci, A.R. Ten Cate, Ten Cate's oral histology: development, structure, and function (Elsevier Mosby, St. Louis, MO, 2013), pp. 239–256

    Google Scholar 

  5. A. Nanci, A. R. Ten Cate, Ten Cate's oral histology: development, structure, and function (Elsevier Mosby, St. Louis, MO, 2013), pp. 169–217

    Google Scholar 

  6. L. Otis, Y. Chen, Q. Zhu, Characterization of dentin by optical coherence tomography. J. Dent. Res. 82, A 3979 (2004)

    Google Scholar 

  7. J.A. Izatt, K. Kobayashi, M.V. Sivak, J.K. Barton, A.J. Welch, Optical coherence tomography for biodiagnostics. Opt. Photon. News 8, 41–47 (1997)

    Article  ADS  Google Scholar 

  8. Z. Ding, High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt. Lett. 27, 4 (2002)

    Article  Google Scholar 

  9. L.L. Otis, B.W. Colston Jr., M.J. Everett, H. Nathel, Dental optical coherence tomography: a comparison of two in vitro systems using a light source at 1310 nm. Dentomaxillofac. Radiol. 29(2), 85–89 (2000)

    Article  Google Scholar 

  10. Y. Pan, Z. Li, T. Xie, C.R. Chu, Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage. J. Biomed. Opt. 8(4), 648–654 (2003)

    Article  ADS  Google Scholar 

  11. W.G. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. Chen, D. McCormick, N.C. Tien, Three-dimensional optical coherence tomography employing A 2-axis microelectromechanical scanning mirror. IEEE Journal of Selected Topics in Quantum Electronics 11, 806–810 (2005)

    Google Scholar 

  12. J.M. Zara, S. Yazdanfar, K.D. Rao, J.A. Izatt, S.M. Smith, Electrostatic micromachine scanning mirror for optical coherence tomography. Opt. Lett. 28, 828–830 (2003)

    Article  Google Scholar 

  13. P. Tran, D.S. Mukai, M. Brenner, Z. Chen, In vivo endoscopic optical coherence tomography using rotational MEMS probe. Opt. Lett. 29, 1236–1239 (2004)

    Article  ADS  Google Scholar 

  14. Y. Wang, M. Bachman, G.P. Li, S. Guo, B. Wong, Z. Chen, Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography. Opt. Lett. 30, 53–55 (2005)

    Article  ADS  Google Scholar 

  15. W.G. Jung, J. Zhang, L. Wang, Z. Chen, D.T. McCormick, N.C. Tien, Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror. Appl. Phys. Lett. 88, 163901–163903 (2006)

    Article  ADS  Google Scholar 

  16. W.G. Jung, L. Zhang, J. Wang, Z. Chen, D.T. McCormick, N.C. Tien, Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror. IEEE J. Sel. Top. Quantum Electron. 11, 806–810 (2005)

    Article  Google Scholar 

  17. A.D. Aguirre, P.R. Hertz, Y. Chen, J.G. Fujimoto, W. Piyawattanametha, L. Fan, M.C. Wu, Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging. Opt. Express 15, 2445–2453 (2007)

    Article  ADS  Google Scholar 

  18. J.T.W. Yeow, V.X.D. Yang, A. Chahwan, M.L. Gordon, B. Qi, I.A. Vitkin, B.C. Wilson, A.A. Goldenberg, Micromachined 2-D scanner for 3-D optical coherence tomography. Sensors Actuators A 117, 331–340 (2005)

    Article  Google Scholar 

  19. X. Liu, M.J. Cobb, Y. Chen, M.B. Kimmey, X. Li, Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt. Lett. 29(15), 1763–1765 (2004)

    Article  ADS  Google Scholar 

  20. S. Moon, S.W. Lee, M. Rubinstein, B.J. Wong, Z. Chen, Semi-resonant operation of a fiber-cantilever piezotube scanner for stable optical coherence tomography endoscope imaging. Opt. Express 18(20), 21183–21197 (2010)

    Article  ADS  Google Scholar 

  21. S.A. Boppart, B.E. Bouma, C. Pitris, J.G. Tearney, J.G. Fujimoto, M.E. Brezinski, Forward-imaging instruments for optical coherence tomography. Opt. Lett. 22(21), 1618–1620 (1997)

    Article  ADS  Google Scholar 

  22. N.R. Munce, A. Mariampillai, B.A. Standish, M. Pop, K.J. Anderson, G.Y. Liu, T. Luk, B.K. Courtney, G.A. Wright, I.A. Vitkin, V.X. Yang, Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter. Opt. Lett. 33(7), 657–659 (2008)

    Article  ADS  Google Scholar 

  23. E.J. Min, J. Na, S.Y. Ryu, B.H. Lee, Single-body lensed-fiber scanning probe actuated by magnetic force for optical imaging. Opt. Lett. 34(12), 1897–1899 (2009)

    Article  ADS  Google Scholar 

  24. L. Huo, J. Xi, Y. Wu, X. Li, Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging. Opt. Express 18(14), 14375–14384 (2010)

    Article  ADS  Google Scholar 

  25. M.H. Niemz, Laser-tissue interactions (Springer, Berlin, 1996), pp. 178–195

    Book  MATH  Google Scholar 

  26. A. Nanci, A.R. Ten Cate, Ten Cate’s oral histology: development, structure, and function (Elsevier Mosby, St. Louis, MO, 2013), pp. 462–465.

    Google Scholar 

  27. A. Lussi, Validity of diagnostic and treatment decisions of fissure canes. Caries Res. 25, 296–303 (1991)

    Article  Google Scholar 

  28. A. Wenzel, N. Pitts, E.H. Verdonschott, H. Kalsbeek, Developments in radiographic caries diagnosis. Dent 21, 131–140 (1993)

    Article  Google Scholar 

  29. R.B. Nytun, M. Raadal, I. Espelid, Diagnosis of dentin involvement in occlusal caries based on visual and radiographic examination of the teeth. Scand. J. Dent. Res. 100, 144–148 (1992)

    Google Scholar 

  30. K.L. Weerheijm, H.J. Groen, A.J.J. Bast, J.A. Kieft, M.A.J. Eijkman, W.E. van Amerongen, Clinically Undetected occlusal dentine caries: a radiographic comparison. Caries Res. 26, 305–309 (1992)

    Article  Google Scholar 

  31. K.R. Ekstrand, D.N. Ricketts, C. Longbottom, N.B. Pitts, Visual and tactile assessment of arrested initial enamel lesions. Caries Res. 39(3), 173–177 (2005)

    Article  Google Scholar 

  32. K.R. Ekstrand, I. Kuzmina, L. Bjomdal, A. Thyistrup, Relationship between external and histologic features of progressive stages of caries in the occlusal fossa. Caries Res. 29, 243–250 (1995)

    Article  Google Scholar 

  33. K.R. Ekstrand, D.N. Ricketts, E.A. Kidd, Do occlusal carious lesions spread laterally at the enamel-dentin junction? A histolopathological study. Clin. Oral Investig. 2(1), 15–20 (1998)

    Article  Google Scholar 

  34. A. Wenzel, E.H. Verdonschot, G.J. Truin, K.G. Konig, Accuracy of visual inspection, fiber-optic transillumination, and various radiographic image modalities for the detection of occlusal caries in extracted non-cavitated teeth. J. Dent. Res. 71(12), 1934–1937 (1992)

    Article  Google Scholar 

  35. B.T. Amaechi, S.M. Higham, A.G.H. Podoleanu, J.A. Rogers, D.A. Jackson, Use of optical coherence tomography for assessment of dental caries: quantitative procedure. J. Oral Rehabil. 28(12), (2001)

    Google Scholar 

  36. B.T. Amaechi, A. Podoleanu, S.M. Higham, D.A. Jackson, Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J. Biomed. Opt. 8(4), 642–647 (2003)

    Article  ADS  Google Scholar 

  37. A.C. Ko, L.P. Choo-Smith, M. Hewko, L. Leonardi, M.G. Sowa, C.C. Dong, P. Williams, B. Cleghorn, Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. J. Biomed. Opt. 10(3), 031118 (2005)

    Article  ADS  Google Scholar 

  38. M.G. Sowa, D.P. Popescu, J.R. Friesen, M.D. Hewko, L.P. Choo-Smith, A comparison of methods using optical coherence tomography to detect demineralized regions in teeth. J. Biophotonics 4(11–12), 814–823 (2011)

    Article  Google Scholar 

  39. B.T. Amaechi, A.G. Podoleanu, G. Komarov, S.M. Higham, D.A. Jackson, Quantification of root caries using optical coherence tomography and microradiography: a correlational study. Oral Health Prev. Dent. 2(4), 377–382 (2004)

    Google Scholar 

  40. L.S. de Melo, R.E. de Araujo, A.Z. Freitas, D. Zezell, N.D. Vieira, J. Girkin, A. Hall, M.T. Carvalho, A.S. Gomes, Evaluation of enamel dental restoration interface by optical coherence tomography. J. Biomed. Opt. 10(6), 64027 (2005)

    Article  Google Scholar 

  41. P. Ngaotheppitak, C.L. Darling, D. Fried, Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography. Lasers Surg. Med. 37(1), 78–88 (2005)

    Article  Google Scholar 

  42. Y. Chen, L.L. Otis, D.Q. Piao, Q. Zhu, Characterization of dentin enamel and carious lesion by a polarization-sensitive optical coherence tomography system. Appl. Optics 44(11), 2041–2048 (2005)

    Article  ADS  Google Scholar 

  43. D. Fried, J. Xie, S. Shafi, J.D. Featherstone, T.M. Breunig, C. Le, Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J. Biomed. Opt. 7(4), 618–627 (2002)

    Article  ADS  Google Scholar 

  44. A. Baumgartner, S. Dichtl, C.K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A.F. Fercher, W. Sperr, Polarization-sensitive optical coherence tomography of dental structures. Caries Res. 34(1), 59–69 (2000)

    Article  Google Scholar 

  45. H. Kang, C.L. Darling, D. Fried, Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography. Dent. Mater. 28(5), 488–494 (2012)

    Article  Google Scholar 

  46. T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C.L. Darling, D. Fried, Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography. Lasers Surg. Med. 42(10), 738–745 (2010)

    Article  Google Scholar 

  47. A. Milosevic, Toothwear: aetiology and presentation. Dent. Update 25, 6–11 (1998)

    Google Scholar 

  48. J. Meurmann, J. Toskala, P. Nuutinien, E. Klemetti, Oral and dental manifestations in gastroesophageal reflux disease. Oral Surg. Oral Med. Oral Pathol. 78, 583–589 (1994)

    Article  Google Scholar 

  49. B. Gregory-Head, D.A. Curtis, Erosion caused by gastroesophageal reflux: diagnostic considerations. J. Prosthodont. 6, 278–285 (1997)

    Article  Google Scholar 

  50. D.W. Bartlett, D.F. Evans, B.G. Smith, The relationship between gastro-oesophageal reflux disease and dental erosion. J. Oral Rehabil. 23, 289–297 (1996)

    Article  Google Scholar 

  51. C.H. Wilder-Smith, P. Wilder-Smith, H. Kawakami-Wong, J. Voronets, K. Osann, A. Lussi, Quantification of dental erosions in patients with GERD using optical coherence tomography before and after double-blind, randomized treatment with esomeprazole or placebo. Am. J. Gastroenterol. 104(11), 2788–2795 (2009). doi:10.1038/ajg.2009.441

    Article  Google Scholar 

  52. H. Shemesh, G. van Soest, M.K. Wu, P.R. Wesselink, Detection of root surface fractures with swept-source optical coherence tomography (SS-OCT). Photomed. Laser Surg. 31(1), 23–27 (2013). doi:10.1089/pho.2012.3383

    Article  Google Scholar 

  53. T. Yoshioka, H. Sakaue, H. Ishimura, A. Ebihara, H. Suda, Y. Sumi, Diagnosis of vertical root fractures with optical coherence tomography. J. Endod. 34(6), 739–742 (2008)

    Article  Google Scholar 

  54. G.Q. Monteiro, M.A. Montes, A.S. Gomes, C.C. Mota, S.L. Campello, A.Z. Freitas, Marginal analysis of resin composite restorative systems using optical coherence tomography. Dent. Mater. 27(12), e213–e223 (2011)

    Article  Google Scholar 

  55. T.A. Bakhsh, A. Sadr, Y. Shimada, J. Tagami, Y. Sumi, Non-invasive quantification of resin-dentin interfacial gaps using optical coherence tomography: validation against confocal microscopy. Dent. Mater. 27(9), 915–925 (2011)

    Article  Google Scholar 

  56. L.L. Otis, J.C. Meiers, Refraction artifacts cause spatial distortion in OCT images. J. Dent. Res. 79(SI), 456 (2000)

    Google Scholar 

  57. L.L. Otis, R.I. al-Sadhan, J. Meiers, D. Redford-Badwal, Identification of occlusal sealants using optical coherence tomography. J. Clin. Dent. 14(1), 7–10 (2003)

    Google Scholar 

  58. J.S. Holtzman, K. Osann, J. Pharar, K. Lee, Y.C. Ahn, T. Tucker, S. Sabet, Z. Chen, R. Gukasyan, P. Wilder-Smith, Ability of optical coherence tomography to detect caries beneath commonly used dental sealants. Lasers Surg. Med. 42(8), 752–759 (2010)

    Article  Google Scholar 

  59. R.S. Jones, M. Staninec, D. Fried, Imaging artificial caries under composite sealants and restorations. J. Biomed. Opt. 9(6), 1297–1304 (2004)

    Article  ADS  Google Scholar 

  60. L.L. Otis, B.W. Colston, M.J. Everett, Optical coherence tomography: a novel assessment of coronal restorations. J. Dent. Res. 77, 824 (1998)

    Google Scholar 

  61. L.L. Otis, B.W. Colston, M.J. Everett, Optical coherence topography: a novel assessment of composite wear. J. Dent. Res. 77, 276 (1998)

    Google Scholar 

  62. A. Badersten, R. Nilveus, J. Egelberg, Reproducibility of probing attachment level measurements. J. Clin. Periodontol. 11, 475–485 (1984)

    Article  Google Scholar 

  63. G.C. Armitage, G.K. Svanbern, H. Loe, Microscopic evaluation of clinical measurements of connective tissue attachment levels. J. Clin. Periodontol. 4(3), 173–190 (1977)

    Article  Google Scholar 

  64. U. van der Velden, Errors in the assessment of pocket depth in vitro. J. Clin. Periodontol. 5, 182–187 (1978)

    Article  Google Scholar 

  65. H. Kingman, H. Loe, A. Anerun, Boysen, Errors in measuring parameters associated with periodontal health and disease. J. Periodontol. 62, 77–486 (1991)

    Google Scholar 

  66. M.K. Jeffcoat, M.S. Reddy, A comparison of probing and radiographic methods for detection of periodontal disease progression. Curr. Opin. Dent. 1, 45–51 (1991)

    Google Scholar 

  67. M.C.K. Yang, Y.Y. Namgung, R.G. Marks, I. Magnusson, W.B. Clark, Change detection on longitudinal data in periodontal research. J Periodont Res 28, 152–160 (1993)

    Article  Google Scholar 

  68. M.A. Espeland, U.E. Zappa, P.E. Hogan, C. Simona, H. Graf, Cross-sectional and longitudinal reliability for clinical measurement of attachment loss. J. Clin. Periodontol. 18, 126–133 (1991)

    Article  Google Scholar 

  69. M.J. Novak, Diagnosis of periodontal diseases: reaction paper. Adv. Dent. Res. 5, 37–40 (1991)

    Google Scholar 

  70. L.L. Otis, D. Piao, Q. Zhu, Optical coherence tomography of oral soft tissues. J Acad Laser Dent 12(4), 16 (2004)

    Google Scholar 

  71. D.Q. Piao, Q. Zhu, L.L. Otis, Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in Optical Doppler tomography. Opt. Lett. 28(13), 1120–1122 (2003)

    Article  ADS  Google Scholar 

  72. L.L. Otis, D. Piao, C.W. Gibson, Q. Zhu, Quantifying labial blood flow using optical Doppler tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 98, 189–194 (2004)

    Article  Google Scholar 

  73. J. Na, B.H. Lee, J.H. Baek, E.S. Choi, Optical approach for monitoring the periodontal ligament changes induced by orthodontic forces around maxillary anterior teeth of white rats. Med. Biol. Eng. Comput. 46(6), 597–603 (2008)

    Article  Google Scholar 

  74. C.E. Misch, Dental implant prosthetics (Elsevier Mosby, St. Louis, Mo, 2005)

    Google Scholar 

  75. T. Berglundh, L. Persson, B. Klinge, A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J. Clin. Periodontol. 29(Suppl 3), 197–212 (2002)

    Article  Google Scholar 

  76. T. Albrektsson, L. Sennerby, Direct bone anchorage of oral implants: clinical and experimental considerations of the concept of osseointegration. Int. J. Prosthodont. 3(1), 30–41 (1990)

    Google Scholar 

  77. D. Buser, H.P. Weber, N.P. Lang, Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin. Oral Implants Res. 1(1), 33–40 (1990)

    Article  Google Scholar 

  78. M. Esposito, J. Hirsch, U. Lekholm, P. Thomsen, Differential diagnosis and treatment strategies for biologic complications and failing oral implants: a review of the literature. Int. J. Oral Maxillofac. Implants 14(4), 473–490 (1999)

    Google Scholar 

  79. C.E. Misch, The implant quality scale: a clinical assessment of the health – disease continuum. Oral Health 88(7), 15 (1998)

    Google Scholar 

  80. R.T. Kao, D.A. Curtis, P.A. Murray, Diagnosis and management of peri-implant disease. J. Calif. Dent. Assoc. 25(12), 872–880 (1997)

    Google Scholar 

  81. M.S. Block, J.N. Kent, Prospective review of integral implants. Dent. Clin. North Am. 36(1), 27–37 (1992)

    Google Scholar 

  82. G.E. Salvi, N.P. Lang, Diagnostic parameters for monitoring peri-implant conditions. Int. J. Oral Maxillofac. Implants 19(Suppl), 116–127 (2004)

    Google Scholar 

  83. A. Mombelli, N.P. Lang, The diagnosis and treatment of peri-implantitis. Periodontol. 2000 17, 63–76 (1998)

    Article  Google Scholar 

  84. A. Mombelli, Etiology, diagnosis, and treatment considerations in peri-mplantitis. Curr. Opin. Periodontol. 4, 127–136 (1997)

    Google Scholar 

  85. L.J. Heitz-Mayfield, N.P. Lang, Antimicrobial treatment of peri-implant diseases. Int. J. Oral Maxillofac. Implants 19(Suppl), 128–139 (2004)

    Google Scholar 

  86. B. Klinge, A. Gustafsson, T. Berglundh, A systematic review of the effect of anti-infective therapy in the treatment of peri-implantitis. J. Clin. Periodontol. 29(Suppl 3), 213–225 (2002)

    Article  Google Scholar 

  87. A.M. Roos-Jansaker, S. Renvert, J. Egelberg, Treatment of peri-implant infections: a literature review. J. Clin. Periodontol. 30(6), 467–485 (2003)

    Article  Google Scholar 

  88. M.C. Manz, Factors associated with radiographic vertical bone loss around implants placed in a clinical study. Ann. Periodontol. 5(1), 137–151 (2000)

    Article  Google Scholar 

  89. M. Esposito, P. Thomsen, L.E. Ericson, U. Lekholm, Histopathologic observations on early oral implant failures. Int. J. Oral Maxillofac. Implants 14(6), 798–810 (1999)

    Google Scholar 

  90. J.W. Verhoeven, M.S. Cune, C. de Putter, Reliability of some clinical parameters of evaluation in implant dentistry. J. Oral Rehabil. 27(3), 211–216 (2000)

    Article  Google Scholar 

  91. American Cancer Society, Cancer Facts and Figures (American Cancer Society, Atlanta, 2000), p. 4

    Google Scholar 

  92. J. Regezi, J. Sciubba (eds.), Oral Pathology (W.B.Saunders, Philadelphia, 1993), pp. 77–90

    Google Scholar 

  93. California Department of Health Services. Cancer Surveillance Section Annual Report, March 1999

    Google Scholar 

  94. D.P. Slaughter, H.W. Southwick, W. Smejkal, Field cancerization in oral stratified squamous epithelium. Cancer 6, 963–968 (1953)

    Article  Google Scholar 

  95. U.S. Department of Health and Human Services. A National Call to Action to Promote Oral Health http://www.nidr.nih.gov/sgr/nationalcalltoaction.htm. Rockville: Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institutes of Health, National Institute of Dental and Craniofacial Research, May 2003. Report No.: 03-5303

  96. P.E. Petersen, T. Yamamoto, Community Improving the oral health of older people: the approach of the WHO Global Oral Health Programme. Dent. Oral Epidemiol. 33(2), 81–92 (2005)

    Article  Google Scholar 

  97. J.B. Epstein, R. Feldman, R.J. Dolor, S.R. Porter, The utility of tolonium chloride rinse in the diagnosis of recurrent or second primary cancers in patients with prior upper aerodigestive tract cancer. Head Neck 25(11), 911–921 (2003)

    Article  Google Scholar 

  98. J.B. Epstein, L. Zhang, M. Rosin, Advances in the diagnosis of oral premalignant and malignant lesions. J. Can. Dent. Assoc. 68(10), 617–621 (2002)

    Google Scholar 

  99. S. Silverman, C. Migliorati, J. Barbosa, Toluidine blue staining in the detection of oral precancerous and malignant lesions. Oral Surg. Oral Med. Oral Pathol. 57, 379–382 (1984)

    Article  Google Scholar 

  100. J. Epstein, C. Scully, U. Spinelli, Toluidine blue and Lugol’s iodine solution for the assessment of oral malignant disease and lesions at risk of malignancy. J. Oral Pathol. Med. 21, 160–163 (1992)

    Article  Google Scholar 

  101. Patton LL, The effectiveness of community-based visual screening and utility of adjunctive diagnostic aids in the early detection of oral cancer. Oral Oncol. 41, 708–723 (2003)

    Google Scholar 

  102. M.A. Onofre, M.R. Sposto, C.M. Navarro, Reliability of toluidine blue application in the detection of oral epithelial dysplasia and in situ and invasive squamous cell carcinomas. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 91(5), 535–540 (2001)

    Article  Google Scholar 

  103. T.W. Poate, J.A. Buchanan, T.A. Hodgson, P.M. Speight, A.W. Barrett, D.R. Moles, C. Scully, S.R. Porter, An audit of the efficacy of the oral brush biopsy technique in a specialist Oral Medicine unit. Oral Oncol. 40(8), 829–834 (2004)

    Article  Google Scholar 

  104. G.R. Ogden, J.G. Cowpe, M.W. Green, Detection of field change in oral cancer using oral exfoliative cytologic study. Cancer 68, 1611–1615 (1991)

    Article  Google Scholar 

  105. M.P. Rosin, J.B. Epstein, K. Berean, S. Durham, J. Hay, X. Cheng et al., The use of exfoliative cell samples to map clonal genetic alterations in the oral epithelium of high-risk patients. Cancer Res. 57, 5258–5260 (1997)

    Google Scholar 

  106. J.C. Kennedy, R.H. Pottier, Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J. Photochem. Photobiol. 14, 275–292 (1992)

    Article  Google Scholar 

  107. R.C.J. Benson, Treatment of diffuse transitional cell carcinoma in situ by whole bladder hematoporphyrin derivative photodynamic therapy. J. Urol. 134, 675–678 (1985)

    Google Scholar 

  108. K. Svanberg, I. Wang, R. Rydell, A. Elner, J. Wennerberg, L. Pais Clemente, E. Cardosa, R. Pratas, M. Pais Clemente, S. Andersson-Engels, S. Svanberg, Fluorescence diagnostics of head and neck cancer utilizing oral administration of δ-Amino Levulinic acid. SPIE 2371, 129–141 (1995)

    ADS  Google Scholar 

  109. C.J. Chang, P. Wilder-Smith, Topical application of photofrin for photodynamic diagnosis of oral neoplasms. Plast. Reconstr. Surg. 115, 1877–1886 (2005)

    Article  Google Scholar 

  110. A. Leunig, K. Rick, H. Stepp, R. Gutmann, G. Alwin, R. Baumgartner, J. Feyh, Fluorescence imaging and spectroscopy of 5-aminolevulinic acid-induced protoporphyrin IX for the detection of neoplastic lesions in the oral cavity. Am. J. Surg. 172(6), 674–677 (1996)

    Article  Google Scholar 

  111. C.S. Betz, H. Stepp, S. Arbogast, G. Grevers, R. Baumgartner, A. Leunig, A comparative study of normal inspection, autofluorescence and 5-ALA-induced PPIX fluorescence for oral cancer diagnosis. Int. J. Cancer 97, 245–252 (2002)

    Article  Google Scholar 

  112. I.J. Bigio, S.G. Bown, Spectroscopic sensing of cancer and cancer therapy: current status of translational research. Cancer Biol. Ther. 3(3), 259–267 (2004)

    Article  Google Scholar 

  113. K. Sokolov, M. Follen, R. Richards-Kortum, Optical spectroscopy for detection of neoplasia. Curr. Opin. Chem. Biol. 6(5), 651–658 (2002)

    Article  Google Scholar 

  114. K. Sokolov, R. Drezek, K. Gossage, R. Richards-Kortum, Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology. Opt. Expr. 5, 302–317 (1999)

    Article  ADS  Google Scholar 

  115. I. Georgakoudi, E. Sheets, M.G. Muller, V. Backman, C.P. Crum, K. Badizadegan, R.R. Dasari, M.S. Feld, G.R. Harrison, Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo. Am. J. Obstet. Gynecol. 186, 374–382 (2002)

    Article  Google Scholar 

  116. I. Georgakoudi, B.C. Jacobson, J. Van Dam, V. Backman, M.B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G.A. Thomas et al., Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barretts esophagus. Gastroenterology 120, 1620–1629 (2001)

    Article  Google Scholar 

  117. R.J. Nordstrom, L. Burke, J.M. Niloff, J.F. Myrtle, Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy. Lasers Surg. Med. 29, 118–127 (2001)

    Article  Google Scholar 

  118. R.A. Weersink, J.E. Hayward, K.R. Diamond, M.S. Patterson, Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy. Photochem. Photobiol. 66, 326–335 (1997)

    Article  Google Scholar 

  119. G. Zonios, L. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M.S. Feld, Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl. Opt. 38, 6628–6637 (1999)

    Article  ADS  Google Scholar 

  120. R.R. Alfano, D.B. Tata, J. Cordero, P. Tomashefsky, F.W. Longo, M.A. Alfano, Laser induced fluorescence spectroscopy from native cancerous and normal tissue. IEEE J. Quant. Electron. 20, 1507–1511 (1984)

    Article  ADS  Google Scholar 

  121. G.A. Wagnieres, W.M. Star, B.C. Wilson, In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol. 68, 603–632 (1998)

    Article  Google Scholar 

  122. N. Ramanujam, Fluorescence spectroscopy of neoplastic and non neoplastic tissues. Neoplasia 2, 89–117 (2000)

    Article  Google Scholar 

  123. R. Drezek, C. Brookner, I. Pavlova, I. Boiko, A. Malpica, R. Lotan, M. Follen, R. Richards-Kortum, Autofluorescence microscopy of fresh cervical-tissue sections reveals alterations in tissue biochemistry with dysplasia. Photochem. Photobiol. 73, 636–641 (2001)

    Article  Google Scholar 

  124. I. Georgakoudi, B.C. Jacobson, M.G. Muller, E.E. Sheets, K. Badizadegan, D.L. Carr-Locke, C.P. Crum, C.W. Boone, R.R. Dasari, J. Van Dam et al., NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 62, 682–687 (2002)

    Google Scholar 

  125. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, R. Richards-Kortum, Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications. J. Biomed. Opt. 6, 385–396 (2001)

    Article  ADS  Google Scholar 

  126. A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, R. Richards-Kortum, Fluorescence excitation emission matrices of human tissue: a system for in vivo measurement and data analysis. Appl. Spectr. 53, 302–311 (1998)

    Article  ADS  Google Scholar 

  127. R.A. Zangaro, L. Silveira, R. Manoharan, G. Zonios, I. Itzkan, R. Dasari, J. Van Dam, M.S. Feld, Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis. Appl. Opt. 35, 5211–5219 (1997)

    Article  ADS  Google Scholar 

  128. N. Ramanujam, M. Follen Mitchell, A. Mahadevan-Jansen, S.L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, Cervical pre-cancer detection using a multivariate statistical algorithm based on laser induced fluorescence spectra at multiple excitation wavelengths. Photochem. Photobiol. 6, 720–735 (1996)

    Article  Google Scholar 

  129. H. Zeng, C. MacAulay, D.I. McLean, B. Palcic, Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation. J. Photochem. Photobiol. 38, 234–240 (1997)

    Article  Google Scholar 

  130. D.E. Hyde, T.J. Farrel, M.S. Patterons, B.C. Wilson, A diffusion theory model of spatially resolved fluorescence from depth dependent fluorophore concentrations. Phys. Med. Biol. 46, 369–383 (2001)

    Article  Google Scholar 

  131. Q. Zhang, M. Muller, J. Wu, M.S. Feld, Turbidity free fluorescence spectroscopy of biological tissue. Opt. Lett. 25, 1451–1453 (2000)

    Article  ADS  Google Scholar 

  132. F. Koenig, F.J. McGovern, H. Enquist, R. Larne, T.F. Deutsch, K.T. Schomacker, Autofluorescence guided biopsy for the early diagnosis of bladder carcinoma. J. Urol. 159, 1871–1875 (1998)

    Article  Google Scholar 

  133. S. Andersson-Engels, C. Klinteberg, K. Svanberg, S. Svanberg, In vivo fluorescence imaging for tissue diagnostics. Phys. Med. Biol. 42, 815–824 (1997)

    Article  Google Scholar 

  134. N. Stone, C. Kendall, J. Smith, P. Crow, H. Barr, Raman spectroscopy for identification of epithelial cancers. Faraday Discuss. 126, 141–157 (2004)

    Article  ADS  Google Scholar 

  135. M. Culha, D. Stokes, T. Vo-Dinh, Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene. Expert Rev. Mol. Diagn. 3(5), 669–675 (2003)

    Article  Google Scholar 

  136. T.C. Bakker Schut, M.J. Witjes, H.J. Sterenborg, O.C. Speelman, J.L. Roodenburg, E.T. Marple, H.A. Bruining, G.J. Puppels, In vivo detection of dysplastic tissue by Raman spectroscopy. Anal. Chem. 72(24), 6010–6018 (2000)

    Article  Google Scholar 

  137. N. Stone, P. Stavroulaki, C. Kendall, M. Birchall, H. Barr, Raman spectroscopy for early detection of laryngeal malignancy: preliminary results. Laryngoscope 110(10 Pt 1), 1756–1763 (2000)

    Article  Google Scholar 

  138. A. Mahadevan-Jansen, M.F. Mitchell, N. Ramanujam, A. Malpica, S. Thomsen, U. Utzinger, R. Richards-Kortum, Abstract near-infrared Raman spectroscopy for in vitro detection of cervical precancers. Photochem. Photobiol. 68(1), 123–132 (1998)

    Article  Google Scholar 

  139. L.-P. Choo-Smith, H.G.M. Edwards, H.P. Endtz, J.M. Kros, F. Heule, H. Barr, J.S. Robinson Jr., H.A. Bruining, G.J. Puppels, Medical applications of Raman spectroscopy: from proof of principle to clinical implementation. Biopolymers 67, 1–9 (2002)

    Article  Google Scholar 

  140. M.G. Shim, L.M. Song, N.E. Marcon, B.C. Wilson, In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy. Photochem. Photobiol. 72(1), 146–150 (2000)

    Google Scholar 

  141. I.J. Bigio, J.R. Mourant, Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic scattering spectroscopy. Phys. Med. Biol. 42, 803–814 (1997)

    Article  Google Scholar 

  142. M.B. Wallace, L.T. Perelman, V. Backman, J.M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S.J. Shields, I. Itzkan, R.R. Dasari et al., Endoscopic detection of dysplasia in patients with Barrett’s esophagus using light-scattering spectroscopy. Gastroenterology 119, 677–682 (2000)

    Article  Google Scholar 

  143. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R.R. Dasari, L.T. Perelman, M.S. Feld, Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J. Sel. Top. Quant. Electron. 5, 1019–1026 (1999)

    Article  Google Scholar 

  144. J.R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T.M. Johnson, A. Matanock, K. Stetter, J.P. Freyer, Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. J. Biomed. Opt. 5, 131–137 (2000)

    Article  ADS  Google Scholar 

  145. A.L. Clark, A. Gillenwater, R. Alizadeh-Naderi, A.K. El-Naggar, R. Richards-Kortum, Detection and diagnosis of oral neoplasia with an optical coherence microscope. J. Biomed. Opt. 9(6), 1271–1280 (2004)

    Article  ADS  Google Scholar 

  146. J.W. Hettinger, M.M. de la Pena, W.R. Myers, M.E. Williams, A. Reeves, R.L. Parsons, R.C. Haskell, R. Wang, J.I. Medford, Optical coherence microscopy. A technology for rapid, in vivo, non-destructive visualization of plants and plant cells. Plant Physiol. 123, 3–15 (2000)

    Article  Google Scholar 

  147. A. Reeves, R.L. Parsons, J.W. Hettinger, J.I. Medford, In vivo three-dimensional imaging of plants with optical coherence microscopy. J. Microsc. 208, 177–189 (2002)

    Article  MathSciNet  Google Scholar 

  148. J.A. Izatt, M.D. Kulkarni, H.W. Wang, K. Kobayashi, M.V. Sivak, Optical coherence tomography and microscopy in gastrointestinal tissues and human skin. IEEE J. Sel. Top. Quantum Electron. 2, 1017–1028 (1996)

    Article  Google Scholar 

  149. A.D. Aguirre, P. Hsiung, T.H. Ko, I. Hartl, J.G. Fujimoto, High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Opt. Lett. 28, 2064–2066 (2003)

    Article  ADS  Google Scholar 

  150. J.A. Izatt, M.R. Hee, G.M. Owen, Optical coherence microscopy in scattering media. Opt. Lett. 19, 590 (1994)

    Article  ADS  Google Scholar 

  151. C. Bertrand, P. Corcuff, In vivo spatio-temporal visualization of the human skin by real-time confocal microscopy. Scanning 16, 150–154 (1993)

    Article  Google Scholar 

  152. P. Corcuff, G. Gonnord, G.E. Piérard, J.L. Lévéque, In vivo confocal microscopy of human skin: a new design for cosmetology and dermatology. Scanning 18, 351–355 (1996)

    Article  Google Scholar 

  153. B.R. Masters, D.J. Aziz, A.F. Gmitro, J.H. Kerr, T.C. O’Grady, L. Goldman, Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization. J. Biomed. Optics 2, 437–445 (1997)

    Article  ADS  Google Scholar 

  154. S. González, M. Rajadhyaksha, G. Rubinstein, R.R. Anderson, Characterization of psoriasis in vivo by reflectance confocal microscopy. J. Med. (Westbury) 30, 337–356 (1999)

    Google Scholar 

  155. S. Gonzalez, M. Rajadhyaksha, A. Gonzalez-Serva, W.M. White, R.R. Anderson, Confocal reflectance imaging of folliculitis in vivo: correlation with routine histology. J. Cutaneous Pathol. 26, 201–205 (1999)

    Article  Google Scholar 

  156. K.J. Busam, K. Hester, C. Charles, D.L. Sachs, C.R. Antonescu, S. Gonzalez, A.C. Halpern, Detection of clinically amelanotic malignant melanoma and assessment of its margins by in vivo confocal scanning laser microscopy. Archiv. Dermatol. 137, 923–929 (2001)

    Google Scholar 

  157. R.G. Langley, M. Rajadhyaksha, P.J. Dwyer, A.J. Sober, T.J. Flotte, R.R. Anderson, Confocal scanning laser microscopy of benign and malignant melanocytic skin lesions in vivo. J. Am. Acad. Dermatol. 45, 365–376 (2001)

    Article  Google Scholar 

  158. S. Gonzalez, Z. Tannous, Real-time in vivo confocal reflectance microscopy of basal cell carcinoma. J. Am. Acad. Dermatol. 47, 869–874 (2002)

    Article  Google Scholar 

  159. T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, M. Follen, Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue. Acad. Radiol. 9(5), 504–512 (2002)

    Article  Google Scholar 

  160. R.A. Drezek, T. Collier, C.K. Brookner, A. Malpica, R. Lotan, R.R. Richards-Kortum, M. Follen, Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid. Am. J. Obstet. Gynecol. 182, 1135–1139 (2000)

    Article  Google Scholar 

  161. H. Inoue, T. Igari, T. Nishikage, K. Ami, T. Yoshida, T. Iwai, A novel method of virtual histopathology using laser-scanning confocal microscopy in-vitro with untreated fresh specimens from the gastrointestinal mucosa. Endoscopy 32, 439–443 (2000)

    Article  Google Scholar 

  162. W.M. White, M. Rajadhyaksha, S. Gonzalez, R.L. Fabian, R.R. Anderson, Noninvasive imaging of human oral mucosa in vivo by confocal reflectance microscopy. Laryngoscope 109, 1709–1717 (1999)

    Article  Google Scholar 

  163. A.M. Clark, A.M. Gillenwater, T.G. Collier, R. Alizadeh-Naderi, A.K. El-Naggar, R. Richards-Kortum, Confocal microscopy for real-time detection of oral cavity neoplasia. Clin. Cancer Res. 9, 4714–4721 (2003)

    Google Scholar 

  164. P. Wilder-Smith, T. Krasieva, W.G. Jung, J. Zhang, Z.P. Chen, K. Osann, B. Tromberg, Non-invasive imaging of oral premalignancy and malignancy. Invited contribution to special edition. J. Biomed. Optics 10(5), 050601-1-8 (2005)

    Article  Google Scholar 

  165. P. Wilder-Smith, W.G. Jung, M. Brenner, K. Osann, H. Beydoun, D. Messadi, Z. Chen, Optical coherence tomography for the diagnosis of oral malignancy. Lasers Surg. Med. 35, 269–275 (2004)

    Article  Google Scholar 

  166. P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, D. Messadi, In vivo diagnosis of oral dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients. Lasers Surg. Med. 41(5), 353–357 (2009)

    Article  Google Scholar 

  167. Z. Hamdoon, W. Jerjes, R. Al-Delayme, G. McKenzie, A. Jay, C. Hopper, Structural validation of oral mucosal tissue using optical coherence tomography. Head Neck Oncol. 4, 29 (2012). doi:10.1186/1758-3284-4-29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Wilder-Smith, P., Otis, L., Zhang, J., Chen, Z. (2015). Dental OCT. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_76

Download citation

Publish with us

Policies and ethics