Skip to main content

Choroidal OCT

  • Reference work entry
Optical Coherence Tomography

Abstract

Novel imaging devices, imaging strategies and automated image analysis with optical coherence tomography have improved our understanding of the choroid in health and pathology. Non-invasive in-vivo high resolution choroidal imaging has had its highest impact in the investigation of macular diseases such as diabetes macular edema and age-related macular degeneration. Choroidal thickness may provide a clinically feasible measure of disease stage and treatment success. It will even support disease diagnosis and phenotyping as is demonstrated in this chapter. Utilizing color coded thickness mapping of the choroid and its Sattler's and Haller's layer may further strengthen the sensitivity of the investigation findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z.Q. Yin, Vaegan, T.J. Millar, P. Beaumont, S. Sarks, Widespread choroidal insufficiency in primary open-angle glaucoma. J. Glaucoma 6(1), 23–32 (1997)

    Article  Google Scholar 

  2. D.S. McLeod, G.A. Lutty, High-resolution histologic analysis of the human choroidal vasculature. Invest. Ophthalmol. Vis. Sci. 35(11), 3799–3811 (1994)

    Google Scholar 

  3. S.H. Sarks, Ageing and degeneration in the macular region: a clinico-pathological study. Br. J. Ophthalmol. 60(5), 324–341 (1976)

    Article  Google Scholar 

  4. W.R. Green, S.N. Key, Senile macular degeneration: a histopathologic study. Trans. Am. Ophthalmol. Soc. 75, 180–254 (1977)

    Google Scholar 

  5. M. Gloesmann, B. Hermann, C. Schubert et al., Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 44(4), 1696–1703 (2003)

    Article  Google Scholar 

  6. Y.N. Ito, K. Mori, J. Young-Duvall, S. Yoneya, Aging changes of the choroidal dye filling pattern in indocyanine green angiography of normal subjects. Retina (Philadelphia, PA) 21(3), 237–242 (2001)

    Article  Google Scholar 

  7. V. Manjunath, M. Taha, J.G. Fujimoto, J.S. Duker, Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J. Ophthalmol. 150(3), 325–329.e1 (2010)

    Article  Google Scholar 

  8. R. Margolis, R.F. Spaide, A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J. Ophthalmol. 147(5), 811–815 (2009)

    Article  Google Scholar 

  9. Y. Ikuno, Y. Tano, Retinal and choroidal biometry in highly myopic eyes using spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 50(8), 3876–3880 (2009)

    Article  Google Scholar 

  10. T. Fujiwara, Y. Imamura, R. Margolis, J.S. Slakter, R.F. Spaide, Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J. Ophthalmol. 148(3), 445–450 (2009)

    Article  Google Scholar 

  11. Y. Ikuno, K. Kawaguchi, Y. Yasuno, T. Nouchi, Choroidal thickness in healthy Japanese subjects. Invest. Ophthalmol. Vis. Sci. 51(4), 2173–2176 (2009)

    Article  Google Scholar 

  12. N. Drasdo, C.W. Fowler, Non-linear projection of the retinal image in a wide-angle schematic eye. Br. J. Ophthalmol. 58(8), 709–714 (1974)

    Article  Google Scholar 

  13. E.M. Anger, A. Unterhuber, B. Hermann et al., Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. Exp. Eye Res. 78(6), 1117–1125 (2004)

    Article  Google Scholar 

  14. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, S. Marcos, Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations. J. Vis. 4(4), 288–298 (2004)

    Article  Google Scholar 

  15. K.E. Lee, B.E. Klein, R. Klein, Z. Quandt, T.Y. Wong, Association of age, stature, and education with ocular dimensions in an older white population. Arch. Ophthalmol. 127(1), 88–93 (2009)

    Article  Google Scholar 

  16. N.C. Strang, K.L. Schmid, L.G. Carney, Hyperopia is predominantly axial in nature. Curr. Eye Res. 17(4), 380–383 (1998)

    Article  Google Scholar 

  17. Anon, Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch. Ophthalmol. 103(12), 1796–1806 (1985)

    Article  Google Scholar 

  18. G. Barteselli, J. Chhablani, S. El-Emam et al., Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis. Ophthalmology 119(12), 2572–2578 (2012)

    Article  Google Scholar 

  19. S.S. Hayreh, Submacular choroidal vascular pattern. Experimental fluorescein fundus angiographic studies. Albrecht. von Graefes. Arch. Klin. Exp. Ophthalmol. 192(3), 181–196 (1974)

    Article  Google Scholar 

  20. M. Esmaeelpour, B. Povazay, B. Hermann et al., Three-dimensional 1060 nm OCT: choroidal thickness maps in normals and improved posterior segment visualization in cataract patients. Invest. Ophthalmol. Vis. Sci. 51(10), 5260–5266 (2010)

    Article  Google Scholar 

  21. D. Cabrera Fernández, H.M. Salinas, C.A. Puliafito, Automated detection of retinal layer structures on optical coherence tomography images. Opt. Express 13(25), 10200–10216 (2005)

    Article  ADS  Google Scholar 

  22. M. Mujat, R. Chan, B. Cense et al., Retinal nerve fiber layer thickness map determined from optical coherence tomography images. Opt. Express 13(23), 9480–9491 (2005)

    Article  ADS  Google Scholar 

  23. K.A. Vermeer, J. Van der Schoot, H.G. Lemij, J.F. De Boer, Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images. Biomed. Opt. Express 2(6), 1743–1756 (2011)

    Article  Google Scholar 

  24. M.V. Sarunic, A. Yazdanpanah, E. Gibson et al., Longitudinal study of retinal degeneration in a rat using spectral domain optical coherence tomography. Opt. Express 18(22), 23435–23441 (2010)

    Article  ADS  Google Scholar 

  25. A.K. Mishra, P.W. Fieguth, D.A. Clausi, Decoupled active contour (DAC) for boundary detection. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 310–324 (2011)

    Article  Google Scholar 

  26. J. Molnár, D. Chetverikov, D.C. DeBuc, W. Gao, G.M. Somfai, Layer extraction in rodent retinal images acquired by optical coherence tomography. Mach. Vis. Appl. 23(6), 1129–1139 (2012)

    Article  Google Scholar 

  27. T. Torzicky, M. Pircher, S. Zotter et al., Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography. Opt. Express 20(7), 7564–7574 (2012)

    Article  ADS  Google Scholar 

  28. V. Kajić, M. Esmaeelpour, B. Povazay, D. Marshall, P. L. Rosin, Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model. Biomed Opt Express. 1;3(1):86–103

    Google Scholar 

  29. V. Kajić, B. Povazay, B. Hermann et al., Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. Opt. Express 18(14), 14730–14744 (2010)

    Article  ADS  Google Scholar 

  30. M. Esmaeelpour, S. Brunner, S. A. Shahrezaei et al., Choroidal thinning in diabetes type 1 detected by 3-dimensional 1060 nm optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 3;53(11):6803-9 (2012)

    Google Scholar 

  31. L. Zhang, K. Lee, M. Niemeijer et al., Automated segmentation of the choroid from clinical SD-OCT. Invest. Ophthalmol. Vis. Sci. 53(12):7510–9 (2012)

    Google Scholar 

  32. F.L. Bookstein, Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  33. M. Hirata, A. Tsujikawa, A. Matsumoto et al., Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52(8), 4971–4978 (2011)

    Article  Google Scholar 

  34. M. Esmaeelpour, B. Povazay, B. Hermann et al., Mapping choroidal and retinal thickness variation in Type 2 diabetes using 3D-1060 nm-OCT. Invest. Ophthalmol. Vis. Sci. 52(8):5311–6 (2011)

    Google Scholar 

  35. G.A. Lutty, J. Cao, D.S. McLeod, Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am. J. Pathol. 151(3), 707–714 (1997)

    Google Scholar 

  36. C. Torti, B. Povazay, B. Hofer et al., Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. Opt. Express 17, 19382–19400 (2009)

    Article  ADS  Google Scholar 

  37. R.F. Mullins, M.N. Johnson, E.A. Faidley, J.M. Skeie, J. Huang, Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 52(3), 1606–1612 (2011)

    Article  Google Scholar 

  38. M. DeNiro, F.A. Al-Mohanna, Zinc transporter 8 (ZnT8) expression is reduced by ischemic insults: a potential therapeutic target to prevent ischemic retinopathy Deli MA, ed. PLoS ONE 7(11), e50360 (2012)

    Article  ADS  Google Scholar 

  39. J.E. Grunwald, T.I. Metelitsina, J.C. Dupont, G.-S. Ying, M.G. Maguire, Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest. Ophthalmol. Vis. Sci. 46(3), 1033–1038 (2005)

    Article  Google Scholar 

  40. A. Boltz, A. Luksch, B. Wimpissinger et al., Choroidal blood flow and progression of age-related macular degeneration in the fellow eye in patients with unilateral choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 51(8), 4220–4225 (2010)

    Article  Google Scholar 

  41. A. Wood, A. Binns, T. Margrain et al., Retinal and choroidal thickness in early age-related macular degeneration. Am J. Ophthalmol. 152(6), 1030–1038.e2 (2011)

    Article  Google Scholar 

  42. Anon, A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol. 119(10), 1417–1436 (2001)

    Article  Google Scholar 

  43. T.L. Berenberg, T.I. Metelitsina, B. Madow et al., The association between drusen extent and foveolar choroidal blood flow in age-related macular degeneration. Retina (Philadelphia, PA) 32(1), 25–31 (2012)

    Article  Google Scholar 

  44. S. Schmitz-Valckenberg, J.S. Steinberg, M. Fleckenstein et al., Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration. Ophthalmology 117(6), 1169–1176 (2010)

    Article  Google Scholar 

  45. J.D. Gass, R.G. Weleber, D.R. Johnson, Non-Hodgkin’s lymphoma causing fundus picture simulating fundus flavimaculatus. Retina (Philadelphia, PA) 7(4), 209–214 (1987)

    Article  Google Scholar 

  46. M.A. Sohrab, R.T. Smith, H. Salehi-Had, S.R. Sadda, A.A. Fawzi, Image registration and multimodal imaging of reticular pseudodrusen. Invest. Ophthalmol. Vis. Sci. 52(8), 5743–5748 (2011)

    Article  Google Scholar 

  47. P. Haas, M. Esmaeelpour, S. Ansari-Shahrezaei, W. Drexler, S. Binde, Choroidal thickness in patients with reticular pseudodrusen using 3D 1060-nm OCT maps. Invest Ophthalmol Vis Sci. 55(4):2674–2681 (2014)

    Article  Google Scholar 

  48. F. Parmeggiani, M.R. Romano, C. Costagliola et al., Mechanism of inflammation in age-related macular degeneration. Mediat. Inflamm. 2012, 546786 (2012)

    Article  Google Scholar 

  49. J.M. Olver, Functional anatomy of the choroidal circulation: methyl methacrylate casting of human choroid. Eye (Lond) 4(Pt 2), 262–272 (1990)

    Article  Google Scholar 

  50. J.S. Slakter, L.A. Yannuzzi, D.R. Guyer, J.A. Sorenson, D.A. Orlock, Indocyanine-green angiography. Curr. Opin. Ophthalmol. 6(3), 25–32 (1995)

    Article  Google Scholar 

  51. M. Miura, S. Makita, T. Iwasaki, Y. Yasuno, An approach to measure blood flow in single choroidal vessel using Doppler optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 53(11), 7137–7141 (2012)

    Article  Google Scholar 

  52. R.M. Rangayyan, F.J. Ayres, F. Oloumi, F. Oloumi, P. Eshghzadeh-Zanjani, Detection of blood vessels in the retina with multiscale Gabor filters. J. Electron. Imaging 17(2), 023018–023018 (2008)

    Article  ADS  Google Scholar 

  53. P.J. Yim, P.L. Choyke, R.M. Summers, Gray-scale skeletonization of small vessels in magnetic resonance angiography. IEEE Trans. Med. Imaging 19(6), 568–576 (2000)

    Article  Google Scholar 

  54. S. Aylward, E. Bullitt, S. Pizer, D. Eberly, Intensity ridge and widths for tubular object segmentation and description, in Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, 1996, San Francisco. (1996) pp. 131–138

    Google Scholar 

  55. N.-Y. Lee, Automatic generation of 3D vessels model using vessels image matching based on adaptive control points, in Advanced Language Processing and Web Information Technology, International Conference on (IEEE Computer Society, Los Alamitos, 2007), pp. 265–270

    Google Scholar 

  56. R. Nekovei, Y. Sun, Back-propagation network and its configuration for blood vessel detection in angiograms. IEEE Trans. Neural. Netw. 6(1), 64–72 (1995)

    Article  Google Scholar 

  57. A.C.S. Chung, J.A. Noble, Statistical 3D vessel segmentation using a rician distribution, in Medical Image Computing and Computer-Assisted Intervention – MICCAI’99, ed. by C. Taylor, A. Colchester. Lecture Notes in Computer Science (Springer, Berlin/Heidelberg, 1999), pp. 82–89. Available at: http://link.springer.com/chapter/10.1007/10704282_9. Accessed 25 Jan 2013

    Chapter  Google Scholar 

  58. C. Kirbas, F. Quek, A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)

    Article  Google Scholar 

  59. R. Motaghiannezam, D.M. Schwartz, S.E. Fraser, In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm. Invest. Ophthalmol. Vis. Sci. 53(4), 2337–2348 (2012)

    Article  Google Scholar 

  60. M. Sohrab, K. Wu, A.A. Fawzi, A pilot study of morphometric analysis of choroidal vasculature in vivo, using en face optical coherence tomography. PLoS ONE 7(11), e48631 (2012)

    Article  ADS  Google Scholar 

  61. V. Kajić, M. Esmaeelpour, C. Glittenberg et al., Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data. Biomed. Opt. Express 4(1), 134–150 (2013)

    Article  Google Scholar 

  62. M. Esmaeelpour, V. Kajic, B. Zabihian, R. Othara, S. Ansari-Shahrezaei, L. Kellner, I. Krebs, S. Nemetz, M.F. Kraus, J. Hornegger, J.G. Fujimoto, W. Drexler, S. Binder, Choroidal Haller’s and Sattler’s layer thickness measurement using 3-dimensional 1060-nm optical coherence tomography. PLoS One. 9(6):e99690 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Esmaeelpour, M., Drexler, W. (2015). Choroidal OCT. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_62

Download citation

Publish with us

Policies and ethics