Skip to main content

Anterior Eye Imaging with Optical Coherence Tomography

  • Reference work entry
Optical Coherence Tomography

Abstract

The development of corneal and anterior segment optical coherence tomography (OCT) technology has advanced rapidly in recently years. The scan geometry and imaging wavelength are both important choices to make in designing anterior segment OCT systems. Rectangular scan geometry offers the least image distortion and is now used in most anterior OCT systems. The wavelength of OCT light source affects resolution and penetration. An optimal choice of the OCT imaging wavelength (840, 1,050, or 1,310 nm) depends on the application of interest. Newer generation Fourier-domain OCT technology can provide scan speed 100–1000 times faster than the time-domain technology. Various commercial anterior OCT systems are available on the market. A wide spectrum of diagnostic and surgical applications using anterior segment OCT had been investigated, including mapping of corneal and epithelial thicknesses, keratoconus screening, measuring corneal refractive power, corneal surgery planning and evaluation in LASIK, intracorneal ring implantation, assessment of angle closure glaucoma, anterior chamber biometry and intraocular lens implants, intraocular lens power calculation, and eye bank donor cornea screening.

Proprietary Interests: David Huang and Yan Li have significant financial interests in Optovue and Carl Zeiss Meditec, companies that may have a commercial interest in the results of this research and technology. Maolong Tang has a significant financial interest in Optovue. These potential conflicts of interest have been reviewed and managed by Oregon Health and Science University.

Financial Support: this study was supported by NIH grants R01 EY018184, a grant from Optovue Inc. and a grant from Research to Prevent Blindness, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin et al., Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. M.R. Hee, J.A. Izatt, E.A. Swanson et al., Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–332 (1995)

    Article  Google Scholar 

  3. M.J. Maldonado, L. Ruiz-Oblitas, J.M. Munuera et al., Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. Ophthalmology 107(1), 81–87 (2000); discussion 8

    Article  Google Scholar 

  4. C. Ustundag, H. Bahcecioglu, A. Ozdamar et al., Optical coherence tomography for evaluation of anatomical changes in the cornea after laser in situ keratomileusis. J. Cataract Refract. Surg. 26(10), 1458–1462 (2000)

    Article  Google Scholar 

  5. K. Hirano, Y. Ito, T. Suzuki et al., Optical coherence tomography for the noninvasive evaluation of the cornea. Cornea 20(3), 281–289 (2001)

    Article  Google Scholar 

  6. S. Muscat, N. McKay, S. Parks et al., Repeatability and reproducibility of corneal thickness measurements by optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 43(6), 1791–1795 (2002)

    Google Scholar 

  7. J. Wang, D. Fonn, T.L. Simpson, L. Jones, Relation between optical coherence tomography and optical pachymetry measurements of corneal swelling induced by hypoxia. Am. J. Ophthalmol. 134(1), 93–98 (2002)

    Article  Google Scholar 

  8. M. Bechmann, M.J. Thiel, A.S. Neubauer et al., Central corneal thickness measurement with a retinal optical coherence tomography device versus standard ultrasonic pachymetry. Cornea 20(1), 50–54 (2001)

    Article  Google Scholar 

  9. A.C. Wong, C.C. Wong, N.S. Yuen, S.P. Hui, Correlational study of central corneal thickness measurements on Hong Kong Chinese using optical coherence tomography, Orbscan and ultrasound pachymetry. Eye 16(6), 715–721 (2002)

    Article  Google Scholar 

  10. Y. Feng, J. Varikooty, T.L. Simpson, Diurnal variation of corneal and corneal epithelial thickness measured using optical coherence tomography. Cornea 20(5), 480–483 (2001)

    Article  Google Scholar 

  11. S. Radhakrishnan, A.M. Rollins, J.E. Roth et al., Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch. Ophthalmol. 119(8), 1179–1185 (2001)

    Article  Google Scholar 

  12. J.A. Goldsmith, Y. Li, M.R. Chalita et al., Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology 112(2), 238–244 (2005)

    Article  Google Scholar 

  13. Y. Li, R. Shekhar, D. Huang, Corneal pachymetry mapping with high-speed optical coherence tomography. Ophthalmology 113(5), 792-9 e1-2 (2006)

    Google Scholar 

  14. N.M. Samy El Gendy, Li Y, Zhang X, Huang D. Repeatability of pachymetric mapping using Fourier domain optical coherence tomography in corneas with opacities. Cornea 31(4), 418–423 (2012)

    Article  Google Scholar 

  15. Y.L. Tan, L.S. Mohanram, S.E. Ti et al., Imaging late capsular bag distension syndrome: an anterior segment optical coherence tomography study. Clin. Ophthalmol. 6, 1455–1458 (2012)

    Article  Google Scholar 

  16. Y. Li, M. Tang, X. Zhang et al., Pachymetric mapping with Fourier-domain optical coherence tomography. J. Cataract Refract. Surg. 36(5), 826–831 (2010)

    Article  MathSciNet  Google Scholar 

  17. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22(5), 340–342 (1997)

    Article  ADS  Google Scholar 

  18. B. Potsaid, B. Baumann, D. Huang et al., Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 18(19), 20029–20048 (2010)

    Article  ADS  Google Scholar 

  19. R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. Opt. Express 14(8), 3225–3237 (2006)

    Article  ADS  Google Scholar 

  20. M. Gora, K. Karnowski, M. Szkulmowski et al., Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt. Express 17(17), 14880–14894 (2009)

    Article  ADS  Google Scholar 

  21. S.J. Lang, A. Cucera, G.K. Lang, Applications of optical coherence tomography in the anterior segment. Klin. Monbl. Augenheilkd. 228(12), 1086–1091 (2011)

    Article  Google Scholar 

  22. M.V. Sarunic, S. Asrani, J.A. Izatt, Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. Arch. Ophthalmol. 126(4), 537–542 (2008)

    Article  Google Scholar 

  23. M. Wojtkowski, High-speed optical coherence tomography: basics and applications. Appl. Opt. 49(16), D30–D61 (2010)

    Article  Google Scholar 

  24. H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981)

    Google Scholar 

  25. American National Standard for Safe Use of Lasers ANSI Z136.1-2000 (Laser Institute of America, American National Standards Institute, Inc., Orlando, 2000)

    Google Scholar 

  26. H. Cheng, A.K. Bates, L. Wood, K. McPherson, Positive correlation of corneal thickness and endothelial cell loss. Serial measurements after cataract surgery. Arch. Ophthalmol. 106(7), 920–922 (1988)

    Article  Google Scholar 

  27. B.A. Holden, G.W. Mertz, J.J. McNally, Corneal swelling response to contact lenses worn under extended wear conditions. Invest. Ophthalmol. Vis. Sci. 24(2), 218–226 (1983)

    Google Scholar 

  28. M.R. O’Neal, K.A. Polse, In vivo assessment of mechanisms controlling corneal hydration. Invest. Ophthalmol. Vis. Sci. 26(6), 849–856 (1985)

    Google Scholar 

  29. G.O. Waring 3rd, W.M. Bourne, H.F. Edelhauser, K.R. Kenyon, The corneal endothelium. Normal and pathologic structure and function. Ophthalmology 89(6), 531–590 (1982)

    Article  Google Scholar 

  30. J.D. Brandt, J.A. Beiser, M.O. Gordon et al., Central corneal thickness and measured IOP response to topical ocular hypotensive medication in the Ocular Hypertension Treatment Study. Am. J. Ophthalmol. 138(5), 717–722 (2004)

    Article  Google Scholar 

  31. R.P. Copt, R. Thomas, A. Mermoud, Corneal thickness in ocular hypertension, primary open-angle glaucoma, and normal tension glaucoma. Arch. Ophthalmol. 117(1), 14–16 (1999)

    Article  Google Scholar 

  32. I. Kozak, M. Hornak, T. Juhas et al., Changes in central corneal thickness after laser in situ keratomileusis and photorefractive keratectomy. J. Refract. Surg. 19(2), 149–153 (2003)

    Google Scholar 

  33. Y.S. Rabinowitz, K. Rasheed, H. Yang, J. Elashoff, Accuracy of ultrasonic pachymetry and videokeratography in detecting keratoconus. J. Cataract Refract. Surg. 24(2), 196–201 (1998)

    Article  Google Scholar 

  34. M. Bohnke, B.R. Masters, R. Walti et al., Precision and reproducibility of measurements of human corneal thickness with rapid optical low-coherence reflectometry (OLCR). J. Biomed. Opt. 4(1), 152–156 (1999)

    Article  ADS  Google Scholar 

  35. D. Huang, J. Wang, C.P. Lin et al., Micron-resolution ranging of cornea anterior chamber by optical reflectometry. Lasers Surg. Med. 11(5), 419–425 (1991)

    Article  ADS  Google Scholar 

  36. J.W. McLaren, C.B. Nau, J.C. Erie, W.M. Bourne, Corneal thickness measurement by confocal microscopy, ultrasound, and scanning slit methods. Am. J. Ophthalmol. 137(6), 1011–1020 (2004)

    Article  Google Scholar 

  37. J. Nissen, J.O. Hjortdal, N. Ehlers et al., A clinical comparison of optical and ultrasonic pachometry. Acta Ophthalmol (Copenh) 69(5), 659–663 (1991)

    Article  Google Scholar 

  38. J.M. Gonzalez-Meijome, A. Cervino, E. Yebra-Pimentel, M.A. Parafita, Central and peripheral corneal thickness measurement with Orbscan II and topographical ultrasound pachymetry. J. Cataract Refract. Surg. 29(1), 125–132 (2003)

    Article  Google Scholar 

  39. V. Yaylali, S.C. Kaufman, H.W. Thompson, Corneal thickness measurements with the Orbscan Topography System and ultrasonic pachymetry. J. Cataract Refract. Surg. 23(9), 1345–1350 (1997)

    Article  Google Scholar 

  40. D.Z. Reinstein, R.H. Silverman, T. Raevsky et al., Arc-scanning very high-frequency digital ultrasound for 3D pachymetric mapping of the corneal epithelium and stroma in laser in situ keratomileusis. J. Refract. Surg. 16(4), 414–430 (2000)

    Google Scholar 

  41. D.Z. Reinstein, R.H. Silverman, S.L. Trokel, D.J. Coleman, Corneal pachymetric topography. Ophthalmology 101(3), 432–438 (1994)

    Article  Google Scholar 

  42. V. Westphal, A.M. Rollins, S. Radhakrishnan, J.A. Izatt, Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle. Opt. Express 10(9), 397–404 (2002)

    Article  ADS  Google Scholar 

  43. R. Zawadzki, C. Leisser, R. Leitgeb, et al., Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm. in Optical Coherence Tomography and Coherence Techniques: SPIE, ed. by W. Drexler, International Society for Optics and photonics, Munich, Germany, vol. 5140 (2003)

    Google Scholar 

  44. R.C. Lin, M.A. Shure, A.M. Rollins et al., Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry. Opt. Lett. 29(1), 83–85 (2004)

    Article  ADS  Google Scholar 

  45. D. Huang, M. Tang, R. Shekhar, Mathematical model of corneal surface smoothing after laser refractive surgery. Am. J. Ophthalmol. 135(3), 267–278 (2003)

    Article  Google Scholar 

  46. D.Z. Reinstein, M. Gobbe, T.J. Archer et al., Epithelial, stromal, and total corneal thickness in keratoconus: three-dimensional display with artemis very-high frequency digital ultrasound. J. Refract. Surg. 26(4), 259–271 (2010)

    Article  Google Scholar 

  47. J. Fujimoto, D. Huang, Introduction to optical coherence tomography, in Imaging the Eye from Front to Back with RTVue Fourier-Domain Optical Coherence Tomography, ed. by D. Huang, J. Duker, J. Fujimoto et al., 1st edn. (SLACK Incorporated, Thorofare, NJ, 2010)

    Google Scholar 

  48. J. Wang, J. Thomas, I. Cox, A. Rollins, Noncontact measurements of central corneal epithelial and flap thickness after laser in situ keratomileusis. Invest. Ophthalmol. Vis. Sci. 45(6), 1812–1816 (2004)

    Article  Google Scholar 

  49. S. Sin, T.L. Simpson, The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography. Optom. Vis. Sci. 83(6), 360–365 (2006)

    Article  Google Scholar 

  50. S. Haque, T. Simpson, L. Jones, Corneal and epithelial thickness in keratoconus: a comparison of ultrasonic pachymetry, Orbscan II, and optical coherence tomography. J. Refract. Surg. 22(5), 486–493 (2006)

    Google Scholar 

  51. Y. Feng, T.L. Simpson, Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography. Optom. Vis. Sci. 85(9), E880–E883 (2008)

    Article  Google Scholar 

  52. Y. Li, O. Tan, D. Huang, Normal and keratoconic corneal epithelial thickness mapping using Fourier-domain optical coherence tomography. in Medical Imaging 2011: Biomedical Applications in Molecular, Structural, and Functional Imaging (Lake Buena Vista, 2011), vol. Proc. SPIE 7965

    Google Scholar 

  53. X. Li, Y.S. Rabinowitz, K. Rasheed, H. Yang, Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology 111(3), 440–446 (2004)

    Article  Google Scholar 

  54. J.C. Erie, S.V. Patel, J.W. McLaren et al., Effect of myopic laser in situ keratomileusis on epithelial and stromal thickness: a confocal microscopy study. Ophthalmology 109(8), 1447–1452 (2002)

    Article  Google Scholar 

  55. N. Maeda, S.D. Klyce, M.K. Smolek, H.W. Thompson, Automated keratoconus screening with corneal topography analysis. Invest. Ophthalmol. Vis. Sci. 35(6), 2749–2757 (1994)

    Google Scholar 

  56. J.B. Randleman, B. Russell, M.A. Ward et al., Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology 110(2), 267–275 (2003)

    Article  Google Scholar 

  57. Y. Li, M. Tang, X. Zhang et al., Pachymetric mapping with Fourier-domain optical coherence tomography. J. Cataract Refract. Surg. 36, 834–839 (2010)

    Google Scholar 

  58. Y. Li, D.M. Meisler, M. Tang et al., Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology 115(12), 2159–2166 (2008)

    Article  Google Scholar 

  59. D.Z. Reinstein, T.J. Archer, M. Gobbe, Corneal epithelial thickness profile in the diagnosis of keratoconus. J. Refract. Surg. 25(7), 604–610 (2009)

    Google Scholar 

  60. D.Z. Reinstein, T.J. Archer, M. Gobbe, Stability of LASIK in topographically suspect keratoconus confirmed non-keratoconic by Artemis VHF digital ultrasound epithelial thickness mapping: 1-year follow-up. J. Refract. Surg. 25(7), 569–577 (2009)

    Google Scholar 

  61. M. Tang, Y. Li, M. Avila, D. Huang, Measurement of total corneal power before and after LASIK with high-speed optical coherence tomography. J. Cataract Refract. Surg. 32, 1843–1850 (2006)

    Article  Google Scholar 

  62. D. Huang, A reliable corneal tomography system is still needed. Ophthalmology 110(3), 455–456 (2003)

    Article  Google Scholar 

  63. S.A. Choudhri, S.K. Feigenbaum, J.S. Pepose, Factors predictive of LASIK flap thickness with the Hansatome zero compression microkeratome. J. Refract. Surg. 21(3), 253–259 (2005)

    Google Scholar 

  64. V.D. Durairaj, J. Balentine, G. Kouyoumdjian et al., The predictability of corneal flap thickness and tissue laser ablation in laser in situ keratomileusis. Ophthalmology 107(12), 2140–2143 (2000)

    Article  Google Scholar 

  65. G.W. Flanagan, P.S. Binder, Precision of flap measurements for laser in situ keratomileusis in 4428 eyes. J. Refract. Surg. 19(2), 113–123 (2003)

    Google Scholar 

  66. O. Giledi, M.G. Mulhern, M. Espinosa et al., Reproducibility of LASIK flap thickness using the Hansatome microkeratome. J. Cataract Refract. Surg. 30(5), 1031–1037 (2004)

    Article  Google Scholar 

  67. D. Miranda, S.D. Smith, R.R. Krueger, Comparison of flap thickness reproducibility using microkeratomes with a second motor for advancement. Ophthalmology 110(10), 1931–1934 (2003)

    Article  Google Scholar 

  68. M.S. Muallem, S.Y. Yoo, A.C. Romano et al., Corneal flap thickness in laser in situ keratomileusis using the Moria M2 microkeratome. J. Cataract Refract. Surg. 30(9), 1902–1908 (2004)

    Article  Google Scholar 

  69. Z.Z. Nagy, M. Resch, I. Suveges, Ultrasound evaluation of flap thickness, ablation depth, and corneal edema after laser in situ keratomileusis. J. Refract. Surg. 20(3), 279–281 (2004)

    Google Scholar 

  70. G. Shemesh, I. Leibovitch, I. Lipshitz, Comparison of corneal flap thickness between primary and fellow eyes using three microkeratomes. J. Refract. Surg. 20(5), 417–421 (2004)

    Google Scholar 

  71. R. Yildirim, C. Aras, A. Ozdamar et al., Reproducibility of corneal flap thickness in laser in situ keratomileusis using the Hansatome microkeratome. J. Cataract Refract. Surg. 26(12), 1729–1732 (2000)

    Article  Google Scholar 

  72. J. Ruckhofer, J. Stoiber, E. Alzner, G. Grabner, One year results of European Multicenter Study of intrastromal corneal ring segments. Part 2: complications, visual symptoms, and patient satisfaction. J. Cataract Refract. Surg. 27(2), 287–296 (2001)

    Article  Google Scholar 

  73. M. Lai, M. Tang, E. Andrade, et al., Assessing intrastromal corneal ring segment depth in keratoconic eyes using optical coherence tomography. J Cataract Refract Surg. 32(11), 1860–5 (2006)

    Article  Google Scholar 

  74. A.R. Irvine, H.E. Kaufman, Intraolar pressure following penetrating keratoplasty. Am. J. Ophthalmol. 68(5), 835–844 (1969)

    Article  Google Scholar 

  75. R.K. Lee, F. Fantes, Surgical management of patients with combined glaucoma and corneal transplant surgery. Curr. Opin. Ophthalmol. 14(2), 95–99 (2003)

    Article  Google Scholar 

  76. G. Marchini, A. Pagliarusco, A. Toscano et al., Ultrasound biomicroscopic and conventional ultrasonographic study of ocular dimensions in primary angle-closure glaucoma. Ophthalmology 105(11), 2091–2098 (1998)

    Article  Google Scholar 

  77. C.J. Pavlin, K. Harasiewicz, M.D. Sherar, F.S. Foster, Clinical use of ultrasound biomicroscopy. Ophthalmology 98(3), 287–295 (1991)

    Article  Google Scholar 

  78. H.B. Chen, K. Kashiwagi, S. Yamabayashi et al., Anterior chamber angle biometry: quadrant variation, age change and sex difference. Curr. Eye Res. 17(2), 120–124 (1998)

    Article  Google Scholar 

  79. A.M. Rollins, J.A. Izatt, Optimal interferometer designs for optical coherence tomography. Opt. Lett. 24(21), 1484–1486 (1999)

    Article  ADS  Google Scholar 

  80. D. Huang, Y. Li, S. Radhakrishnan, Optical coherence tomography of the anterior segment of the eye. Ophthalmol. Clin. North Am. 17(1), 1–6 (2004)

    Article  MATH  Google Scholar 

  81. S. Radhakrishnan, D. Huang, S.D. Smith, Optical coherence tomography imaging of the anterior chamber angle. Ophthalmol. Clin. North Am. 18(3), 375–381 (2005), vi

    Article  Google Scholar 

  82. S. Radhakrishnan, J. Goldsmith, D. Huang et al., Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch. Ophthalmol. 123(8), 1053–1059 (2005)

    Article  Google Scholar 

  83. S. Dorairaj, J.M. Liebmann, R. Ritch, Quantitative evaluation of anterior segment parameters in the era of imaging. Trans. Am. Ophthalmol. Soc. 105, 99–108 (2007); discussion -10

    Google Scholar 

  84. W.P. Nolan, J.L. See, P.T. Chew et al., Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology 114(1), 33–39 (2007)

    Article  Google Scholar 

  85. L.M. Sakata, R. Lavanya, D.S. Friedman et al., Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology 115(5), 769–774 (2008)

    Article  Google Scholar 

  86. R. Leitgeb, C. Hitzenberger, A. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11(8), 889–894 (2003)

    Article  ADS  Google Scholar 

  87. M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)

    Article  ADS  Google Scholar 

  88. F. Memarzadeh, S. Mahdaviani, Y. Li, Interpretation of angle images, in Imaging the eye from Front to Back with RTVue Fourier-Domain Optical Coherence Tomography, ed. by D. Huang, J. Duker, B. Lumbroso et al., 1st edn. (SLACK Incorporated, Thorofare, NJ, 2010)

    Google Scholar 

  89. C.Y. Cheung, C. Zheng, C.L. Ho et al., Novel anterior-chamber angle measurements by high-definition optical coherence tomography using the Schwalbe line as the landmark. Br. J. Ophthalmol. 95(7), 955–959 (2011)

    Article  Google Scholar 

  90. B. Qin, B.A. Francis, Y. Li, et al., Anterior chamber angle measurements using Schwalbe’s line with high resolution Fourier-domain optical coherence tomography. J Glaucoma. 22(9), 84–8 (2013)

    Article  Google Scholar 

  91. M.R. Chalita, Y. Li, S. Smith et al., High-speed optical coherence tomography of laser iridotomy. Am. J. Ophthalmol. 140(6), 1133–1136 (2005)

    Article  Google Scholar 

  92. J.J. Saragoussi, P. Othenin-Girard, Y.J. Pouliquen, Ocular damage after implantation of oversized minus power anterior chamber intraocular lenses in myopic phakic eyes: case reports. Refract. Corneal Surg. 9(2), 105–109 (1993)

    Google Scholar 

  93. G. Baikoff, G. Bourgeon, H.J. Jodai et al., Pigment dispersion and Artisan phakic intraocular lenses: crystalline lens rise as a safety criterion. J. Cataract Refract. Surg. 31(4), 674–680 (2005)

    Article  Google Scholar 

  94. G. Baikoff, E. Lutun, J. Wei, C. Ferraz, Contact between 3 phakic intraocular lens models and the crystalline lens: an anterior chamber optical coherence tomography study. J. Cataract Refract. Surg. 30(9), 2007–2012 (2004)

    Article  Google Scholar 

  95. M.A. Qazi, I.Y. Cua, C.J. Roberts, J.S. Pepose, Determining corneal power using Orbscan II videokeratography for intraocular lens calculation after excimer laser surgery for myopia. J. Cataract Refract. Surg. 33(1), 21–30 (2007)

    Article  Google Scholar 

  96. E. Borasio, J. Stevens, G.T. Smith, Estimation of true corneal power after keratorefractive surgery in eyes requiring cataract surgery: BESSt formula. J. Cataract Refract. Surg. 32(12), 2004–2014 (2006)

    Article  Google Scholar 

  97. S. Sonego-Krone, G. Lopez-Moreno, O.V. Beaujon-Balbi et al., A direct method to measure the power of the central cornea after myopic laser in situ keratomileusis. Arch. Ophthalmol. 122(2), 159–166 (2004)

    Article  Google Scholar 

  98. M. Tang, Y. Li, D. Huang, An intraocular lens power calculation formula based on optical coherence tomography: a pilot study. J. Refract. Surg. 26(6), 430–437 (2010)

    Article  Google Scholar 

  99. M. Tang, A. Chen, Y. Li, D. Huang, Corneal power measurement with Fourier-domain optical coherence tomography. J. Cataract Refract. Surg. 36(12), 2115–2122 (2010)

    Article  Google Scholar 

  100. M. Tang, L. Wang, D.D. Koch et al., Intraocular lens power calculation after previous myopic laser vision correction based on corneal power measured by Fourier-domain optical coherence tomography. J. Cataract Refract. Surg. 38(4), 589–594 (2012)

    Article  Google Scholar 

  101. R.N. Khurana, Y. Li, M. Tang et al., High-speed optical coherence tomography of corneal opacities. Ophthalmology 114(7), 1278–1285 (2007)

    Article  Google Scholar 

  102. T.J. van den Berg, H. Spekreijse, Near infrared light absorption in the human eye media. Vision Res. 37(2), 249–253 (1997)

    Article  Google Scholar 

  103. A.S. Neubauer, S.G. Priglinger, M.J. Thiel et al., Sterile structural imaging of donor cornea by optical coherence tomography. Cornea 21(5), 490–494 (2002)

    Article  Google Scholar 

  104. R.L. Armour, P.J. Ousley, J. Wall et al., Endothelial keratoplasty using donor tissue not suitable for full-thickness penetrating keratoplasty. Cornea 26(5), 515–519 (2007)

    Google Scholar 

  105. P.M. Phillips, M.A. Terry, N. Shamie et al., Descemet's stripping automated endothelial keratoplasty (DSAEK) using corneal donor tissue not acceptable for use in penetrating keratoplasty as a result of anterior stromal scars, pterygia, and previous corneal refractive surgical procedures. Cornea 28(8), 871–876 (2009)

    Article  Google Scholar 

  106. K. Karnowski, B.J. Kaluzny, M. Szkulmowski et al., Corneal topography with high-speed swept source OCT in clinical examination. Biomed. Opt. Express 2(9), 2709–2720 (2011)

    Article  Google Scholar 

  107. I. Grulkowski, J. Liu, B. Potsaid et al., Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed. Opt. Express 3(11), 2733–2751 (2012)

    Article  Google Scholar 

  108. W. Wieser, T. Klein, D.C. Adler et al., Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express 3(10), 2647–2657 (2012)

    Article  Google Scholar 

  109. M. Zhao, A.N. Kuo, J.A. Izatt, 3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea. Opt. Express 18(9), 8923–8936 (2010)

    Article  ADS  Google Scholar 

  110. S. Ortiz, D. Siedlecki, P. Perez-Merino et al., Corneal topography from spectral optical coherence tomography (sOCT). Biomed. Opt. Express 2(12), 3232–3247 (2011)

    Article  Google Scholar 

  111. S. Ortiz, P. Perez-Merino, N. Alejandre et al., Quantitative OCT-based corneal topography in keratoconus with intracorneal ring segments. Biomed. Opt. Express 3(5), 814–824 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Huang, D., Li, Y., Tang, M. (2015). Anterior Eye Imaging with Optical Coherence Tomography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_57

Download citation

Publish with us

Policies and ethics