Skip to main content

Second Harmonic OCT and Combined MPM/OCT

  • Reference work entry
Optical Coherence Tomography
  • 9700 Accesses

Abstract

This chapter describes combined multiphoton microscopy (MPM) and optical coherence tomography (OCT) system and second harmonic OCT (SH-OCT) system. Second harmonic generation (SHG) enables direct imaging of optically anisotropic biological structures, such as membranes, structural proteins, microtubule ensembles, and collagen. SH-OCT combines molecular contrast of SHG with coherence gating of OCT. MPM/OCT combines molecular contrast of MPM with scattering contrast of OCT. Combining MPM and OCT onto a single platform creates a novel multimodality image technique which can acquire structural and functional imaging of tissues simultaneously. We will review the principle and technology of SH-OCT and combined MPM/OCT system, and illustrate a few examples of its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. M.R. Lee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schumun, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography for ophthalmic imaging: new technique delivers micron-scale resolution. IEEE Eng. Med. Biol. Mag. 14(1), 67–76 (1995)

    Article  Google Scholar 

  3. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–79 (1990)

    Article  ADS  Google Scholar 

  4. W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003)

    Article  Google Scholar 

  5. W.R. Zipfel, R.M. Williams, R.A. Christie, Y. Nikitin, B.T. Hyman, Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc. Natl. Acad. Sci. USA 100, 7075 (2003)

    Article  ADS  Google Scholar 

  6. C.K. Sun, C.C. Chen, S.W. Chu, T.H. Tsai, Y.C. Chen, B.L. Lin, Multiharmonic-generation biopsy of skin. Opt. Lett. 28, 2488 (2003)

    Article  ADS  Google Scholar 

  7. D. Kobat, N.G. Horton, C. Xu, In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16(10), 106014 (2011)

    Article  ADS  Google Scholar 

  8. E. Beaurepaire, L. Moreaux, F. Amblard, J. Mertz, Combined scanning optical coherence and two-photon-excited fluorescence microscopy. Opt. Lett. 24, 969–971 (1999)

    Article  ADS  Google Scholar 

  9. S. Tang, T.B. Krasieva, Z. Chen, B. Tromberg, Combined multiphoton microscopy and optical coherence tomography using a 12 femtosecond, broadband source. J. Biomed. Opt. 11, 020502 (2006)

    Article  ADS  Google Scholar 

  10. S. Tang, C.H. Sun, T.B. Krasieva, Z. Chen, B. Tromberg, Imaging sub-cellular scattering contrast using combined optical coherence and multiphoton microscopy. Opt. Lett. 32, 503–505 (2007)

    Article  ADS  Google Scholar 

  11. C. Vinegoni, T.S. Ralston, W. Tan, W. Luo, D.L. Marks, S.A. Boppart, Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy. Appl. Phys. Lett. 88, 053901 (2006)

    Article  ADS  Google Scholar 

  12. C. Joo, K.H. Kim, J.F. de Boer, Spectral-domain optical coherence phase and multiphoton microscopy. Opt. Lett. 32, 623–625 (2007)

    Article  ADS  Google Scholar 

  13. S. Yazdanfar, Y.Y. Chen, P.T.C. So, L.H. Laiho, Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues. Micr. Res. Tech. 70, 503–505 (2007)

    Article  Google Scholar 

  14. Y. Jiang, I. Tomov, Y. Wang, Z. Chen, Second harmonic optical coherence tomography. Opt. Lett. 29, 1090–1092 (2004)

    Article  ADS  Google Scholar 

  15. Y. Jiang, I. Tomov, Y. Wang, Z. Chen, High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon. Appl. Phys. Lett. 86, 133901 (2005)

    Article  ADS  Google Scholar 

  16. S. Yazdanfar, L.H. Laiho, P.T.C. So, Interferometric second harmonic generation microscopy. Opt. Express 12, 2739 (2004)

    Article  ADS  Google Scholar 

  17. B.E. Applegate, C. Yang, A.M. Rollins, J.A. Izatt, Polarization-resolved second-harmonic-generation optical coherence tomography in collagen. Opt. Lett. 29, 2252–2254 (2004)

    Article  ADS  Google Scholar 

  18. M.V. Sarunic, B.E. Applegate, J.A. Izatt, Spectral domain second harmonic optical coherence tomography. Opt. Lett. 30, 2391–2393 (2005)

    Article  ADS  Google Scholar 

  19. J. Su, I.V. Tomov, Y. Jiang, Z. Chen, High resolution frequency-domain second-harmonic optical coherence tomography. Appl. Opt. 46, 1770–1775 (2007)

    Article  ADS  Google Scholar 

  20. A. Zoumi, A. Yeh, B.J. Tromberg, Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. USA 99, 11014 (2002)

    Article  ADS  Google Scholar 

  21. P.J. Campagnola, M.D. Wei, A. Lewis, L.M. Loew, High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77, 3341–3349 (1999)

    Article  Google Scholar 

  22. P.J. Campagnola, L.M. Loew, Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003)

    Article  Google Scholar 

  23. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)

    Google Scholar 

  24. C. Xu, W.R. Zipfel, J.B. Shear, R.M. Williams, W.W. Webb, Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996)

    Article  ADS  Google Scholar 

  25. K. Konig, Multiphoton microscopy in life sciences. J. Microsc. 200, 83–104 (2000)

    Article  Google Scholar 

  26. G. Liu, Z. Chen, Fiber-based combined optical coherence and multiphoton endomicroscopy. J. Biomed. Opt. 16(3), 036010 (2011)

    Article  ADS  Google Scholar 

  27. B.W. Graf, S.A. Boppart, Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy. IEEE J. Sel. Top. Quantum Electron. 18, 1280–1286 (2012)

    Article  Google Scholar 

  28. M. Müller, J. Squier, G.J. Brakenhoff, Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption. Opt. Lett. 20, 1038–1040 (1995)

    Article  ADS  Google Scholar 

  29. M. Müller, J. Squier, R. Wolleschensky, U. Simon, G.J. Brakenhoff, Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives. J. Microsc. 191, 141–150 (1998)

    Article  Google Scholar 

  30. A.F. Fercher, W. Drexler, C.K. Hizenberger, Optical coherence tomography–principles and applications. Rep. Prog. Phys. 66, 239–303 (2003)

    Article  ADS  Google Scholar 

  31. B. Jeong, B. Lee, M.S. Jang, H. Nam, S.J. Yoon, T. Wang, J. Doh, B.G. Yang, M.H. Jang, K.H. Kim, Combined two-photon microscopy and optical coherence tomography using individually optimized sources. Opt. Express 19(14), 13089–13096 (2011)

    Article  ADS  Google Scholar 

  32. S. Tang, Y. Zhou, K.K. Chan, T. Lai, Multiscale multimodal imaging with multiphoton microscopy and optical coherence tomography. Opt. Lett. 36(24), 4800–4802 (2011)

    Article  ADS  Google Scholar 

  33. S. Tang, Y. Zhou, M.J. Ju, Multimodal optical imaging with multiphoton microscopy and optical coherence tomography. J. Biophotonics 5(5–6), 396–403 (2012)

    Article  Google Scholar 

  34. M.T. Myaing, D.G. MacDonald, L. Xingde, Fiber-optic scanning two-photon fluorescence endoscope. Opt. Lett. 31, 1076–1078 (2006)

    Article  ADS  Google Scholar 

  35. L. Fu, A. Jain, H. Xie, C. Cranfield, M. Gu, Nonlinear optical endoscopy based on a double clad photonic crystal fiber and a MEMS mirror. Opt. Express 14, 1027–1032 (2006)

    Article  ADS  Google Scholar 

  36. W. Jung, S. Tang, D.T. McCormic, T. Xie, Y.C. Ahn, J. Su, I.V. Tomov, T.B. Krasieva, B.J. Tromberg, Z. Chen, Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy. Opt. Lett. 33(12), 1324–1326 (2008)

    Article  ADS  Google Scholar 

  37. G. Liu, T. Xie, I.V. Tomov, J. Su, L. Yu, J. Zhang, B.J. Tromberg, Z. Chen, Rotational multiphoton endoscopy with a 1 micron fiber laser system. Opt. Lett. 34(15), 2249–2251 (2009)

    Article  ADS  Google Scholar 

  38. S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.C. Ahn, B.J. Tromberg, Z. Chen, Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning. J. Biomed. Opt. 14(3), 034005 (2009)

    Article  ADS  Google Scholar 

  39. G. Liu, K. Kieu, F.W. Wise, Z. Chen, Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe. J. Biophotonics 4(1–2), 34–39 (2011)

    Article  Google Scholar 

  40. I. Freund, M. Deutsch, Second-harmonic microscopy of biological tissue. Opt. Lett. 11, 94–96 (1986)

    Article  ADS  Google Scholar 

  41. J. Mertz, L. Moreausx, Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers. Opt. Commun. 196, 325–330 (2001)

    Article  ADS  Google Scholar 

  42. L. Moreaux, O. Sandre, L. Mertz, Membrane imaging by second-harmonic generation microscopy. J. Opt. Soc. Am. B 17, 1685 (2000)

    Article  ADS  Google Scholar 

  43. P.J.A. Campagnola, C. Millard, M. Terasaki, P.E. Hoppe, C.J. Malone, W.A. Mohler, Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82, 493 (2002)

    Article  Google Scholar 

  44. D.A. Dombeck, K.A. Kasischke, H.D. Vishwasrao, M. Ingelsson, B.T. Hyman, W.W. Webb, Uniform polarity microtubule assemblies imaged in native brain tissue by second-harmonic generation microscopy. Proc. Natl. Acad. Sci. USA 100, 7081–7086 (2003)

    Article  ADS  Google Scholar 

  45. G. Cox, E. Kable, A. Jones, I.K. Fraser, F. Manconi, M.D. Gorrell, 3-dimensional imaging of collagen using second harmonic generation. J. Struct. Biol. 141, 53 (2003)

    Article  Google Scholar 

  46. Aghajan, H.K., Khalaj, B.H., Kailath, T.: Estimation of multiple 2D uniform motions by sensor array processing techniques. Presented at the image and video processing II, San Jose (1994) (unpublished)

    Google Scholar 

  47. Y.C. Guo, H.E. Savage, F. Liu, S.P. Schantz, P.P. Ho, R.R. Alfano, Subsurface tumor progression investigated by noninvasive optical second harmonic tomography. Proc. Natl. Acad. Sci. USA 96, 10854 (1999)

    Article  ADS  Google Scholar 

  48. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, R.K. Jain, Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9, 796 (2003)

    Article  Google Scholar 

  49. P. Wilder-Smith, K. Osann, N. Hanna, N. El Abbadi, M. Brenner, D.D.V. Messadi, T. Krasieva, In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy. Lasers Surg. Med. 35, 96–103 (2004)

    Article  Google Scholar 

  50. D.A. Dombeck, M. Blanchard-Desce, W.W. Webb, Optical recording of action potentials with second-harmonic generation microscopy. J. Neurosci. 24, 999 (2004)

    Article  Google Scholar 

  51. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, M. Kulhavy, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  52. K. Konig, T.W. Becker, P. Fisher, I. Riemann, K.J. Halbhuber, Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes. Opt. Lett. 24, 113–115 (1999)

    Article  ADS  Google Scholar 

  53. B.M. Kim, J. Eichler, K.M. Reiser, A.M. Rubenchik, L.B. Dasilva, Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity. Lasers Surg. Med. 27, 329–335 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank many of our colleagues who have contributed to the MPM/OCT and SH-OCT projects at UCI and UBC. We want to acknowledge grant support from the National Institutes of Health (R01EB-00293, R01CA-91717, R01EB-10090, R01EY-021519, R01HL-105215, P41EB-015890), Air Force Office of Scientific Research (F49620-00-1-0371), the Beckman Laser Institute Endowment, Natural Sciences and Engineering Research Council of Canada, and the Canada Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Chen, Z., Tang, S. (2015). Second Harmonic OCT and Combined MPM/OCT. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_50

Download citation

Publish with us

Policies and ethics