Skip to main content

Doppler Optical Coherence Tomography

  • Reference work entry
Optical Coherence Tomography

Abstract

Noninvasive techniques for imaging in vivo blood flow are of great value to biomedical research and clinical diagnostics where many diseases have a vascular etiology or component. In ophthalmology, many diseases involve disturbances in ocular blood flow, including diabetic retinopathy, low tension glaucoma, anterior ischemic optic neuritis, and macular degeneration. Simultaneous imaging of tissue structure and blood flow could provide critical information for early diagnosis of ocular diseases.

This chapter describes Doppler OCT, an imaging modality that combines Doppler principles with OCT to image tissue structure and blood flow velocity simultaneously. Since the first demonstration of Doppler OCT in 1997, significant advances have been made to translate the technology from bench-side to clinical applications. The development of phase-resolved methods and Fourier domain technique has significantly increased imaging speed and velocity sensitivity, and has enabled real-time imaging of tissue microcirculation.

We will review the advances in Doppler OCT over the last eighteen years. Several variation of Doppler OCT techniques, such as phase variation and intensity variation methods, will be compared. The recent applications of Doppler OCT for quantifying blood flow, mapping retinal and choroidal microcirculation, and evaluating mechanical properties with optical coherence elastography will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. B.E. Bouma, G.J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002)

    Google Scholar 

  3. A.F. Fercher, C.K. Hizenberger, Optical coherence tomography, in Progress in Optics, ed. by E. Wolf, vol. 44 (Elsevier, North-Holland, 2002), p. 215

    Google Scholar 

  4. Z. Chen, Functional optical coherence tomogoraphy, in Frontiers in Biomedical Engineering, ed. by N.H.C. Hwang, S.L.-Y. Woo (Kluwer Academic/Plenum, New York, 2003), pp. 345–364

    Chapter  Google Scholar 

  5. Z. Chen, T.E. Milner, D. Dave, J.S. Nelson, Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett. 22, 64–66 (1997)

    Article  ADS  Google Scholar 

  6. Z. Chen, T.E. Milner, S. Srinivas, X.J. Wang, A. Malekafzali, M.J.C. van Gemert, J.S. Nelson, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett. 22, 1119–1121 (1997)

    Article  ADS  Google Scholar 

  7. J.A. Izatt, M.D. Kulkarni, S. Yazdanfar, J.K. Barton, A.J. Welch, In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. Opt. Lett. 22, 1439–1441 (1997)

    Article  ADS  Google Scholar 

  8. M.D. Kulkarni, T.G. van Leeuwen, S. Yazdanfar, J.A. Izatt, Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography. Opt. Lett. 23, 1057–1059 (1998)

    Article  ADS  Google Scholar 

  9. S. Yazdanfar, M.D. Kulkarni, J.A. Izatt, High resolution imaging of in vivo cardiac dynamics using color Doppler. Opt. Express 1, 424 (1997)

    Article  ADS  Google Scholar 

  10. Z. Chen, Y. Zhao, S.M. Srinivas, J.S. Nelson, N. Prakash, R.D. Frostig, Optical Doppler tomography. IEEE J. Sel. Top. Quant. Electron. 5(4), 1134–1141 (1999)

    Article  Google Scholar 

  11. Z. Chen, T.E. Milner, X.J. Wang, S. Srinivas, J.S. Nelson, Optical Doppler tomography: imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy. Photochem. Photobiol. 67, 56–60 (1998)

    Article  Google Scholar 

  12. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25, 114–116 (2000)

    Article  ADS  Google Scholar 

  13. H. Ren, M.K. Breke, Z. Ding, Y. Zhao, J.S. Nelson, Z. Chen, Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography. Opt. Lett. 27, 409–411 (2002)

    Article  ADS  Google Scholar 

  14. U. Morgner, W. Drexler, X.D. Kartner, C. Piltris, E.P. Ippen, J.G. Fujimoto, Spectroscopic optical coherence tomography. Opt. Lett. 25, 111–113 (2000)

    Article  ADS  Google Scholar 

  15. J.M. Schmitt, S.H. Xiang, K.M. Yung, Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Am. A15, 2288 (1998)

    Article  ADS  Google Scholar 

  16. M.R. Hee, D. Huang, E.A. Swanson, J.G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Amer. B 9, 903–908 (1992)

    Article  ADS  Google Scholar 

  17. J.F. de Boer, S.M. Srinivas, A. Malekafzali, Z. Chen, J.S. Nelson, Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt. Express 3, 212–218 (1998)

    Article  ADS  Google Scholar 

  18. H. Ren, Z. Ding, Y. Zhao, J. Miao, J.S. Nelson, Z. Chen, Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and the Stokes vectors in human skin. Opt. Lett. 27, 1702–1704 (2002)

    Article  ADS  Google Scholar 

  19. C.E. Saxer, J.F. de Boer, B. Hyle Park, Y. Zhao, Z. Chen, J.S. Nelson, High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Opt. Lett. 25, 1355–1357 (2000)

    Article  ADS  Google Scholar 

  20. S. Jiao, L.V. Wang, Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography. Opt. Lett. 27, 101–103 (2002)

    Article  ADS  Google Scholar 

  21. Y. Jiang, I. Tomov, Y. Wang, Z. Chen, Second harmonic optical coherence tomgoraphy. Opt. Lett. 29, 1090–1092 (2004)

    Article  ADS  Google Scholar 

  22. J.S. Nelson, K.M. Kelly, Y. Zhao, Z. Chen, Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography. Arch. Dermatol. 137(6), 741–744 (2001)

    Google Scholar 

  23. J.F. de Boer, S.M. Srinivas, B.H. Park, T.H. Pham, C. Zhongping, T.E. Milner, J.S. Nelson, Polarization effects in optical coherence tomography of various biological tissues. IEEE J. Sel. Top. Quant. Electron. 5(4), 1200–1204 (1999)

    Article  Google Scholar 

  24. M.G. Ducros, J.F. de Boer, H. Huai-En, L.C. Chao, Z. Chen, J.S. Nelson, T.E. Milner, H.G. Rylander III, Polarization sensitive optical coherence tomography of the rabbit eye. IEEE J. Sel. Top. Quant. Electron. 5, 1159–1167 (1999)

    Article  Google Scholar 

  25. E. Yamada, M. Matsumura, S. Kyo, R. Omoto, Usefulness of a prototype intravascular ultrasound imaging in evaluation of aortic dissection and comparison with angiographic study, transesophageal echocardiography, computed tomography, and magnetic resonance imaging. Am. J. Cardiol. 75, 161–165 (1995)

    Article  Google Scholar 

  26. V. Gusmeroli, M. Martnelli, Distributed laser Doppler velocimeter. Opt. Lett. 16, 1358–1360 (1991)

    Article  ADS  Google Scholar 

  27. Y. Zhao, Z. Chen, Z. Ding, H. Ren, J.S. Nelson, Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography. IEEE J. Sel. Top. Quant. Electron. 7, 931–935 (2001)

    Article  Google Scholar 

  28. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J.F. de Boer, J.S. Nelson, Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett. 25, 1358–1360 (2000)

    Article  ADS  Google Scholar 

  29. Z. Ding, Y. Zhao, H. Ren, S.J. Nelson, Z. Chen, Real-time phase resolved optical coherence tomography and optical Doppler tomography. Opt. Express 10, 236–245 (2002)

    Article  ADS  Google Scholar 

  30. V.X. Yang, M.L. Gordon, A. Mok, Y. Zhao, Z. Chen, R.S.C. Cobbold, B.C. Wilson, I.A. Vitkin, Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation. Opt. Commun. 208, 209–214 (2002)

    Article  ADS  Google Scholar 

  31. V. Westphal, S. Yazdanfar, A.M. Rollins, J.A. Izatt, Real-time, high velocity-resolution color Doppler optical coherence tomography. Opt. Lett. 27(1), 34–36 (2002)

    Article  ADS  Google Scholar 

  32. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, M. Kulhavy, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  33. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)

    Article  ADS  Google Scholar 

  34. M.A. Choma, M.V. Sarunic, C. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  ADS  Google Scholar 

  35. R.A. Leitgeb, L. Schmetterer, W. Drexler, A.F. Fercher, R.J. Zawadzki, T. Bajraszewski, Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt. Express 11, 3116–3121 (2003)

    Article  ADS  Google Scholar 

  36. B.R. White, M.C. Pierce, N. Nassif, B. Cense, B.H. Park, G.J. Tearney, B.E. Bouma, T.C. Chen, J.F. de Boer, In vivo dynamic human retinal blood flow imaging using ultra-high speed spectral domain optical Doppler tomography. Opt. Express 25, 3490–3497 (2003)

    Article  ADS  Google Scholar 

  37. L. Wang, Y. Wang, M. Bachaman, G.P. Li, Z. Chen, Frequency domain Phase-resolved optical Doppler and Doppler variance tomography. Opt. Commun. 242, 345–347 (2004)

    Article  ADS  Google Scholar 

  38. J. Zhang, Z. Chen, In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography. Opt. Express 13, 7449–7457 (2005)

    Article  ADS  Google Scholar 

  39. B. Vakoc, S. Yun, J.F. de Boer, G. Tearney, B.E. Bouma, Phase-resolved optical frequency domain imaging. Opt. Express 13, 5483–5493 (2005)

    Article  ADS  Google Scholar 

  40. L. Yu, Z. Chen, Doppler variance imaging for three-dimensional retina and choroid angiography. J. Biomed. Opt. 15(1), 016029 (2010)

    Article  ADS  Google Scholar 

  41. L. Yu, E. Nguyen, G. Liu, B. Choi, Z. Chen, Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model. J. Biomed. Opt. 15(6), 066006 (2010)

    Article  ADS  Google Scholar 

  42. G. Liu, M. Rubinstein, A. Saidi, W. Qi, A. Foulad, B. Wong, Z. Chen, Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT. Opt. Express 19(12), 11880–11889 (2011)

    Article  ADS  Google Scholar 

  43. G. Liu, W. Qi, L. Yu, Z. Chen, Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging. Opt. Express 19(4), 3657–3666 (2011)

    Article  ADS  Google Scholar 

  44. H. Ren, Y. Wang, J. S. Nelson and Z. Chen, Power optical Doppler tomography imaging of blood vessel in human skin and M-mode Doppler imaging of blood flow in chick chorioallantoic membrane, Proc. SPIE. (2003, unpublished)

    Google Scholar 

  45. J. Barton, S. Areomaki, Flow measurement without phase information in optical coherence tomography. Opt. Express 13, 5483–5493 (2005)

    Article  Google Scholar 

  46. A. Mariampillai, B.A. Standish, E.H. Moriyama, M. Khurana, N.R. Munce, M.K. Leung, J. Jiang, A. Cable, B.C. Wilson, I.A. Vitkin, V.X. Yang, Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt. Lett. 33(13), 1530–1532 (2008)

    Article  ADS  Google Scholar 

  47. Reza Motaghiannezam, S. Fraser, Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography. Biomed. Opt. Express 3, 503–521 (2012)

    Article  Google Scholar 

  48. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, Optical coherence angiography. Opt. Express 14(17), 7821–7840 (2006)

    Article  ADS  Google Scholar 

  49. Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, Y. Yasuno, Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. Opt. Express 15(12), 7538–7550 (2007)

    Article  ADS  Google Scholar 

  50. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, T. Yatagai, In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt. Express 15(10), 6121–6139 (2007)

    Article  ADS  Google Scholar 

  51. E. Jonathan, J. Enfield, M.J. Leahy, Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images. J. Biophotonics 4(9), 583–587 (2010)

    Google Scholar 

  52. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J.J. Liu, M.F. Kraus, H. Subhash, J.G. Fujimoto, J. Hornegger, D. Huang, Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 20(4), 4710–4725 (2012)

    Article  ADS  Google Scholar 

  53. L. An, R.K. Wang, In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt. Express 16(15), 11438–11452 (2008)

    Article  ADS  Google Scholar 

  54. R.K. Wang, L. An, P. Francis, D.J. Wilson, Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. Opt. Lett. 35(9), 1467–1469 (2010)

    Article  ADS  Google Scholar 

  55. R.K. Wang, L. An, S. Saunders, D.J. Wilson, Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment. J. Biomed. Opt. 15(2), 020502 (2010)

    Article  ADS  Google Scholar 

  56. B. Rao, L. Yu, H.K. Jiang, L.C. Zacharias, R.M. Kurtz, B.D. Kuppermann, Z. Chen, Imaging pulsatile retinal blood flow in human eye. J. Biomed. Opt. 5, 040505 (2008)

    Article  Google Scholar 

  57. X. Xu, L. Yu, Z. Chen, Effect of erythrocyte aggregation on hematocrit measurement using spectral-domain optical coherence tomography. IEEE Trans. Biomed. Eng. 55(12), 2753–2758 (2008)

    Article  Google Scholar 

  58. S. Yazdanfar, A.M. Rollins, J.A. Izatt, Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Opt. Lett. 25, 1448–1450 (2000)

    Article  ADS  Google Scholar 

  59. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, D. Huang, Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography. Opt. Express 17(5), 4061–4073 (2009)

    Article  ADS  Google Scholar 

  60. Y. Wang, B.A. Bower, J.A. Izatt, O. Tan, D. Huang, In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J. Biomed. Opt. 12(4), 041215 (2007)

    Article  ADS  Google Scholar 

  61. R.K. Wang, L. An, Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. Opt. Express 17(11), 8926–8940 (2009)

    Article  ADS  Google Scholar 

  62. D.Y. Kim, J. Fingler, J.S. Werner, D.M. Schwartz, S.E. Fraser, R.J. Zawadzki, In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed. Opt. Express 2(6), 1504–1513 (2011)

    Article  Google Scholar 

  63. V.X. Yang, M.L. Gordon, S. Tang, N.E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B.C. Wilson, I.A. Vitkin, High speed, wide velocity dynamic range Doppler optical coherence tomography (part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts. Opt. Express 11, 2416–2424 (2003)

    Article  ADS  Google Scholar 

  64. V.X. Yang, S.J. Tang, M.L. Gordon, B. Qi, G. Gardiner, M. Cirocco, P. Kortan, G.B. Haber, G. Kandel, I.A. Vitkin, B.C. Wilson, N.E. Marcon, Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience. Gastrointest. Endosc. 61, 879–890 (2006)

    Article  Google Scholar 

  65. B.J. Vakoc, R.M. Lanning, J.A. Tyrrell, T.P. Padera, L.A. Bartlett, T. Stylianopoulos, L.L. Munn, G.J. Tearney, D. Fukumura, R.K. Jain, B.E. Bouma, Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15(10), 1219–1223 (2009)

    Article  Google Scholar 

  66. V.J. Srinivasan, S. Sakadzic, I. Gorczynska, S. Ruvinskaya, W. Wu, J.G. Fujimoto, D.A. Boas, Quantitative cerebral blood flow with optical coherence tomography. Opt. Express 18(3), 2477–2494 (2010)

    Article  ADS  Google Scholar 

  67. G. Liu, Z. Chen, Optical coherence tomography for brain imaging, in Optical Methods and Instrumentation in Brain Imaging, ed. by S.J. Madsen (Springer, New York, 2013), pp. 157–172

    Chapter  Google Scholar 

  68. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, Z. Chen, Phase-resolved acoustic radiation force optical coherence elastography. J. Biomed. Opt. 17(11), 110505 (2012)

    Article  ADS  Google Scholar 

  69. C. Zhou, T.H. Tsai, D.C. Adler, H.C. Lee, D.W. Cohen, A. Mondelblatt, Y. Wang, J.L. Connolly, J.G. Fujimoto, Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells. Opt. Lett. 35(5), 700–702 (2010)

    Article  ADS  Google Scholar 

  70. C. Blatter, B. Grajciar, P. Zou, W. Wieser, A.J. Verhoef, R. Huber, R.A. Leitgeb, Intrasweep phase-sensitive optical coherence tomography for noncontact optical photoacoustic imaging. Opt. Lett. 37(21), 4368–4370 (2012)

    Article  ADS  Google Scholar 

  71. Z. Chen, J. Zhang, Doppler optical coherence tomography, in Optical Coherence Tomography: Technology and Applications, ed. by W. Drexler, J.G. Fujimoto (Springer, Berlin, 2008), pp. 621–649

    Chapter  Google Scholar 

  72. M. Wojtkowski, V.J. Srinivasan, T. Ko, J.G. Fujimoto, A. Kowalczyk, J.S. Duker, Ultrahigh-resolution high speed Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 12, 2404–2422 (2004)

    Article  ADS  Google Scholar 

  73. B. Cense, N. Nassif, T.C. Chen, M.C. Pierce, S.H. Yun, B.H. Park, B.E. Bouma, G.J. Tearney, J.F. de Boer, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomgoraphy. Opt. Express 12, 2435–2447 (2004)

    Article  ADS  Google Scholar 

  74. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, B.E. Bouma, High speed optical frequency domain imaging. Opt. Express 11, 2593–2563 (2003)

    Google Scholar 

  75. S.H. Yun, C. Boudoux, G.J. Tearney, B.E. Bouma, High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett. 28, 1981–1983 (2003)

    Article  ADS  Google Scholar 

  76. J. Zhang, J.S. Nelson, Z. Chen, Removal of mirror image and enhancement of signal to noise ratio in Fourier domain optical coherence tomography using an electro-optical phase modulator. Opt. Lett. 30, 147–149 (2005)

    Article  ADS  Google Scholar 

  77. J. Zhang, J.S. Nelson, Z. Chen, Full range polarization-sensitive Fourier domain optical coherence tomography. Opt. Express 12, 6033–6039 (2004)

    Article  ADS  Google Scholar 

  78. M.V. Sarunic, M.A. Choma, C. Yang, J.A. Izatt, Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 × 3 fiber couplers. Opt. Express 13, 957–967 (2005)

    Article  ADS  Google Scholar 

  79. G. Liu, A.J. Lin, B.J. Tromberg, Z. Chen, A comparison of Doppler optical coherence tomography methods. Biomed. Opt. Express 3(10), 2669–2680 (2012)

    Article  Google Scholar 

  80. D. Piao, L.L. Otis, Q. Zhu, Doppler angle and flow velocity mapping by combine Doppler shift and Doppler bandwidth measurements in optical Doppler tomography. Opt. Lett. 28, 1120 (2003)

    Article  ADS  Google Scholar 

  81. S. Proskurin, Y. He, R. Wang, Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography. Opt. Lett. 28, 1227 (2003)

    Article  ADS  Google Scholar 

  82. L. Wang, Development of phase-resolved optical Doppler tomography for imaging and quantifying microflow dynamics and particle size in microfluidic channels, Ph.D. Thesis, University of California, Irvine, 2004

    Google Scholar 

  83. Y.-C. Ahn, W. Jung, Z. Chen, Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography. Opt. Lett. 32, 1587–1589 (2007)

    Article  ADS  Google Scholar 

  84. V.J. Srinivasan, J.Y. Jiang, M.A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A.E. Cable, D.A. Boas, Rapid volumetric angiography of cortical microvasculature with optical coherence tomography. Opt. Lett. 35, 43–45 (2010)

    Article  ADS  Google Scholar 

  85. H. Li, B.A. Standish, A. Mariampillai, N.R. Munce, Y. Mao, S. Chiu, N.E. Marcon, B.C. Wilson, I.A. Vitkin, V.X.D. Yang, Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy. Lasers Surg. Med. 38, 754–761 (2006)

    Article  Google Scholar 

  86. M.C.G. Aalders, M. Triesscheijn, M. Ruevekamp, M. de Bruin, P. Baas, D.J. Faber, F.A. Stewart, Doppler optical coherence tomography to monitor the effect of photodynamic therapy on tissue morphology and perfusion. J. Biomed. Opt. 11, 044011 (2006)

    Article  ADS  Google Scholar 

  87. A. Mariampillai, M.K. Leung, M. Jarvi, B.A. Standish, K. Lee, B.C. Wilson, A. Vitkin, V.X. Yang, Optimized speckle variance OCT imaging of microvasculature. Opt. Lett. 35(8), 1257–1259 (2010)

    Article  ADS  Google Scholar 

  88. G. Liu, W. Jia, V. Sun, B. Choi, Z. Chen, High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography. Opt. Express 20, 7694–7705 (2012)

    Article  ADS  Google Scholar 

  89. L. An, H.M. Subhush, D.J. Wilson, R.K. Wang, High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography. J. Biomed. Opt. 15(2), 026011 (2010)

    Article  ADS  Google Scholar 

  90. Y. Jia, M.R. Grafe, A. Gruber, N.J. Alkayed, R.K. Wang, In vivo optical imaging of revascularization after brain trauma in mice. Microvasc. Res. 81(1), 73–80 (2010)

    Article  Google Scholar 

  91. Y.-C. Ahn, W. Jung, Z. Chen, Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel. Lab Chip 8, 125–133 (2008)

    Article  Google Scholar 

  92. M.A. Choma, A.K. Ellerbee, C. Yang, T.L. Creazzo, J.A. Izatt, Spectral-domain phase microscopy. Opt. Lett. 30(10), 1162–1164 (2005)

    Article  ADS  Google Scholar 

  93. J. Zhang, B. Rao, L. Yu, Z. Chen, High-dynamic-range quantitative phase imaging with spectral domain phase microscopy. Opt. Lett. 34(21), 3442–3444 (2009)

    Article  ADS  Google Scholar 

  94. C. Joo, T. Akkin, B. Cense, B.H. Park, J.F. de Boer, Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Opt. Lett. 30(16), 2131–2133 (2005)

    Article  ADS  Google Scholar 

  95. D.C. Adler, R. Huber, J.G. Fujimoto, Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers. Opt. Lett. 32(6), 626–628 (2007)

    Article  ADS  Google Scholar 

  96. L. Yu, S. Mohanty, G. Liu, S. Genc, Z. Chen, M.W. Berns, Quantitative phase evaluation of dynamic changes on cell membrane during laser microsurgery. J. Biomed. Opt. 13(5), 050508 (2008)

    Article  ADS  Google Scholar 

  97. J.M. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3(6), 199–211 (1998)

    Article  ADS  Google Scholar 

  98. R.K. Wang, Z. Ma, S.J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Appl. Phys. Lett. 89(19), 144103 (2006)

    Article  ADS  Google Scholar 

  99. S.J. Kirkpatrick, R.K. Wang, D.D. Duncan, OCT-based elastography for large and small deformations. Opt. Express 14(24), 11585–11597 (2006)

    Article  ADS  Google Scholar 

  100. C. Sun, B. Standish, V.X.D. Yang, Optical coherence elastography: current status and future applications. J. Biomed. Opt. 16(4), 043001 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank many of our colleagues who have contributed to the Doppler OCT project at the Beckman Laser Institute and Department of Biomedical Engineering at UCI, particularly the students and postdoctoral fellows. Dr. Chen also wants to acknowledge grants support from the National Institutes of Health (R01EB-10090, R01EY-021529, R01HL-105215, R01HL-125084, and P41EB-015890), Air Force Office of Scientific Research (FA9550-04-0101), and the Beckman Laser Institute Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Chen, Z., Zhang, J. (2015). Doppler Optical Coherence Tomography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_42

Download citation

Publish with us

Policies and ethics