Skip to main content

Ultrahigh Speed OCT

  • Reference work entry
Optical Coherence Tomography

Abstract

Optical coherence tomography (OCT) is an imaging modality that can generate micrometer resolution, two-dimensional cross-sectional images and three-dimensional volumetric data on the internal structure of optically scattering and reflective tissues and materials. The development of Fourier-domain detection enabled a breakthrough in OCT imaging sensitivity and speed, and the newest generation of OCT is based on wavelength swept light sources (Swept source / Fourier-domain OCT; SS-OCT). We describe high imaging speed and long depth range SS-OCT with an emphasis on SS-OCT technology using MEMS-tunable vertical cavity surface-emitting lasers operating at 1,050 nm and 1,310 nm. We also review representative applications using adjustable high speed and long range SS-OCT including ophthalmic imaging (retinal, anterior segment and full eye length imaging), optical coherence microscopy, endoscopy, ocular biometry, metrology, profilometry and non-destructive material evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. A.F. Fercher, C. Hitzenberger, M. Juchem, Measurement of intraocular optical distances using partially coherent laser light. J. Mod. Opt. 38, 1327–1333 (1991)

    Article  ADS  Google Scholar 

  3. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  4. M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  ADS  Google Scholar 

  5. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)

    Article  ADS  Google Scholar 

  6. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22, 340–342 (1997)

    Article  ADS  Google Scholar 

  7. B. Golubovic, B.E. Bouma, G.J. Tearney, J.G. Fujimoto, Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser. Opt. Lett. 22, 1704–1706 (1997)

    Article  ADS  Google Scholar 

  8. E.A. Swanson, S.R. Chinn, Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser, Patent 5,956,355 1999

    Google Scholar 

  9. S.H. Yun, C. Boudoux, G.J. Tearney, B.E. Bouma, High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett. 28, 1981–1983 (2003)

    Article  ADS  Google Scholar 

  10. S.H. Yun, C. Boudoux, M.C. Pierce, J.F. de Boer, G.J. Tearney, B.E. Bouma, Extended-cavity semiconductor wavelength-swept laser for biomedical imaging. IEEE Phot. Technol. Lett. 16, 293–295 (2004)

    Article  ADS  Google Scholar 

  11. Y. Yasuno, V.D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.P. Chan, M. Itoh, T. Yatagai, Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. Opt. Express 13, 10652–10664 (2005)

    Article  ADS  Google Scholar 

  12. M.A. Choma, K. Hsu, J.A. Izatt, Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J. Biomed. Opt. 10, 044009 (2005)

    Article  ADS  Google Scholar 

  13. R. Huber, M. Wojtkowski, K. Taira, J.G. Fujimoto, K. Hsu, Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express 13, 3513–3528 (2005)

    Article  ADS  Google Scholar 

  14. B.D. Goldberg, S. Nezam, P. Jillella, B.E. Bouma, G.J. Tearney, Miniature swept source for point of care optical frequency domain imaging. Opt. Express 17, 3619–3629 (2009)

    Article  ADS  Google Scholar 

  15. Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, M. Haruna, 200 kHz swept light source equipped with KTN deflector for optical coherence tomography. Electron. Lett. 48, 201–202 (2012)

    Article  Google Scholar 

  16. R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14, 3225–3237 (2006)

    Article  ADS  Google Scholar 

  17. W.Y. Oh, B.J. Vakoc, M. Shishkov, G.J. Tearney, B.E. Bouma, > 400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging. Opt. Lett. 35, 2919–2921 (2010)

    Article  ADS  Google Scholar 

  18. W. Wieser, B.R. Biedermann, T. Klein, C.M. Eigenwillig, R. Huber, Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt. Express 18, 14685–14704 (2010)

    Article  ADS  Google Scholar 

  19. T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, K. Ohbayashi, Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser. Appl. Optics 44, 808–816 (2005)

    Article  ADS  Google Scholar 

  20. A.Q. Liu, X.M. Zhang, A review of MEMS external-cavity tunable lasers. J. Micromech. Microeng. 17, R1–R13 (2007)

    Article  Google Scholar 

  21. N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, H. Oohashi, 140-nm quasi-continuous fast sweep using SSG-DBR lasers. IEEE Photon. Technol. Lett. 20, 1015–1017 (2008)

    Article  ADS  Google Scholar 

  22. B. Potsaid, B. Baumann, D. Huang, S. Barry, A.E. Cable, J.S. Schuman, J.S. Duker, J.G. Fujimoto, Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 18, 20029–20048 (2010)

    Article  ADS  Google Scholar 

  23. K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, C.H. Chong, MEMS scanner based swept source laser for optical coherence tomography. Proc. SPIE 7554, 75542Q (2010)

    Article  ADS  Google Scholar 

  24. M.P. Minneman, J. Ensher, M. Crawford, D. Derickson, All-semiconductor high-speed akinetic swept-source for OCT. Proc. SPIE 8311, 831116 (2011)

    Article  Google Scholar 

  25. V. Jayaraman, J. Jiang, H. Li, P.J.S. Heim, G.D. Cole, B. Potsaid, J.G. Fujimoto, A. Cable, OCT Imaging up to 760 kHz axial scan rate using single-mode 1310 nm MEMS-Tunable VCSELs with > 100 nm Tuning Range, in 2011 Conference on Lasers and Electro-Optics (IEEE, 2011), pp. 1–2

    Google Scholar 

  26. B. Potsaid, V. Jayaraman, J.G. Fujimoto, J. Jiang, P.J.S. Heim, A.E. Cable, MEMS tunable VCSEL light source for ultrahigh speed 60 kHz–1 MHz axial scan rate and long range centimeter class OCT imaging. Proc. SPIE 8213, 82130M (2012)

    Article  ADS  Google Scholar 

  27. V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J. Fujimoto, A. Cable, Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography. Proc. SPIE 8276, 82760D (2012)

    Article  ADS  Google Scholar 

  28. V. Jayaraman, G.D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, A. Cable, Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs. Electron. Lett. 48, 1331–1333 (2012)

    Article  Google Scholar 

  29. V. Jayaraman, B. Potsaid, J. Jiang, G.D. Cole, M.E. Robertson, C.B. Burgner, D.D. John, I. Grulkowski, W. Choi, T.H. Tsai, J. Liu, B.A. Stein, S.T. Sanders, J.G. Fujimoto, A.E. Cable, High-speed ultra-broad tuning MEMS-VCSELs for imaging and spectroscopy. Proc. SPIE 8763, 87630H (2013)

    Article  ADS  Google Scholar 

  30. I. Grulkowski, J.J. Liu, B. Potsaid, V. Jayaraman, C.D. Lu, J. Jiang, A.E. Cable, J.S. Duker, J.G. Fujimoto, Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed. Opt. Express 3, 2733–2751 (2012)

    Article  Google Scholar 

  31. O.O. Ahsen, Y.K. Tao, B.M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M.F. Kraus, J.L. Connolly, J. Hornegger, A.E. Cable, J.G. Fujimoto, Swept source optical coherence microscopy using a 1310 nm VCSEL light source. Opt. Express 21, 18021–18033 (2013)

    Article  ADS  Google Scholar 

  32. T.-H. Tsai, B. Potsaid, Y.K. Tao, V. Jayaraman, J. Jiang, P.J.S. Heim, M.F. Kraus, C. Zhou, J. Hornegger, H. Mashimo, A.E. Cable, J.G. Fujimoto, Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology. Biomed. Opt. Express 4, 1119–1132 (2013)

    Article  Google Scholar 

  33. G.J. Tearney, B.E. Bouma, J.G. Fujimoto, High-speed phase- and group-delay scanning with a grating-based phase control delay line. Opt. Lett. 22, 1811–1813 (1997)

    Article  ADS  Google Scholar 

  34. B. Potsaid, I. Gorczynska, V.J. Srinivasan, Y. Chen, J. Jiang, A. Cable, J.G. Fujimoto, Ultrahigh speed Spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt. Express 16, 15149–15169 (2008)

    Article  ADS  Google Scholar 

  35. S. Moon, D.Y. Kim, Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source. Opt. Express 14, 11575–11584 (2006)

    Article  ADS  Google Scholar 

  36. M.K.K. Leung, A. Mariampillai, B.A. Standish, K.K.C. Lee, N.R. Munce, I.A. Vitkin, V.X.D. Yang, High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography. Opt. Lett. 34, 2814–2816 (2009)

    Article  ADS  Google Scholar 

  37. S. Makita, F. Jaillon, M. Yamanari, M. Miura, Y. Yasuno, Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography. Opt. Express 19, 1271–1283 (2011)

    Article  ADS  Google Scholar 

  38. N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, N. Yoshimura, Three-beam spectral-domain optical coherence tomography for retinal imaging. J. Biomed. Opt. 17, 106001–106001 (2012)

    Article  ADS  Google Scholar 

  39. L. An, P. Li, T.T. Shen, R. Wang, High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second. Biomed. Opt. Express 2, 2770–2783 (2011)

    Article  Google Scholar 

  40. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, K. Ohbayashi, Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s. Opt. Lett. 33, 1318–1320 (2008)

    Article  ADS  Google Scholar 

  41. R. Huber, D.C. Adler, J.G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett. 31, 2975–2977 (2006)

    Article  ADS  Google Scholar 

  42. A.F. Fercher, C.K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, In vivo optical coherence tomography. Am J. Ophthalmol. 116, 113–114 (1993)

    Article  Google Scholar 

  43. E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993)

    Article  ADS  Google Scholar 

  44. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, A.F. Fercher, T. Bajraszewski, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7, 457–463 (2002)

    Article  ADS  Google Scholar 

  45. B. Cense, N. Nassif, T. Chen, M. Pierce, S.-H. Yun, B. Park, B. Bouma, G. Tearney, J. de Boer, Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12, 2435–2447 (2004)

    Article  ADS  Google Scholar 

  46. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, A. Fercher, Ultrahigh resolution Fourier domain optical coherence tomography. Opt. Express 12, 2156–2165 (2004)

    Article  ADS  Google Scholar 

  47. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, J. Duker, Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 12, 2404–2422 (2004)

    Article  ADS  Google Scholar 

  48. T. Klein, W. Wieser, C.M. Eigenwillig, B.R. Biedermann, R. Huber, Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt. Express 19, 3044–3062 (2011)

    Article  ADS  Google Scholar 

  49. I. Gorczynska, V.J. Srinivasan, L.N. Vuong, R.W.S. Chen, J.J. Liu, E. Reichel, M. Wojtkowski, J.S. Schuman, J.S. Duker, J.G. Fujimoto, Projection OCT fundus imaging for visualising outer retinal pathology in non-exudative age-related macular degeneration. Br. J. Ophthalmol. 93, 603–609 (2009)

    Article  Google Scholar 

  50. M.F. Kraus, B. Potsaid, M.A. Mayer, R. Bock, B. Baumann, J.J. Liu, J. Hornegger, J.G. Fujimoto, Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed. Opt. Express 3, 1182–1199 (2012)

    Article  Google Scholar 

  51. R.D. Ferguson, D. Hammer, L.A. Paunescu, S. Beaton, J.S. Schuman, Tracking optical coherence tomography. Opt. Lett. 29, 2139–2141 (2004)

    Article  ADS  Google Scholar 

  52. Y.H. Zhao, Z.P. Chen, C. Saxer, S.H. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25, 114–116 (2000)

    Article  ADS  Google Scholar 

  53. B.R. White, M.C. Pierce, N. Nassif, B. Cense, B.H. Park, G.J. Tearney, B.E. Bouma, T.C. Chen, J.F. de Boer, In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt. Express 11, 3490–3497 (2003)

    Article  ADS  Google Scholar 

  54. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, Optical coherence angiography. Opt. Express 14, 7821–7840 (2006)

    Article  ADS  Google Scholar 

  55. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, T. Yatagai, Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography. Appl. Optics 45, 1861–1865 (2006)

    Article  ADS  Google Scholar 

  56. J. Fingler, D. Schwartz, C. Yang, S.E. Fraser, Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt. Express 15, 12636–12653 (2007)

    Article  ADS  Google Scholar 

  57. A.H. Bachmann, M.L. Villiger, C. Blatter, T. Lasser, R.A. Leitgeb, Resonant Doppler flow imaging and optical vivisection of retinal blood vessels. Opt. Express 15, 408–422 (2007)

    Article  ADS  Google Scholar 

  58. L. An, R.K.K. Wang, In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt. Express 16, 11438–11452 (2008)

    Article  ADS  Google Scholar 

  59. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, M. Wojtkowski, Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt. Express 16, 6008–6025 (2008)

    Article  ADS  Google Scholar 

  60. Z.C. Luo, Z.G. Wang, Z.J. Yuan, C.W. Dua, Y.T. Pan, Optical coherence Doppler tomography quantifies laser speckle contrast imaging for blood flow imaging in the rat cerebral cortex. Opt. Lett. 33, 1156–1158 (2008)

    Article  ADS  Google Scholar 

  61. A. Mariampillai, B.A. Standish, E.H. Moriyama, M. Khurana, N.R. Munce, M.K.K. Leung, J. Jiang, A. Cable, B.C. Wilson, I.A. Vitkin, V.X.D. Yang, Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt. Lett. 33, 1530–1532 (2008)

    Article  ADS  Google Scholar 

  62. Y.K. Tao, A.M. Davis, J.A. Izatt, Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform. Opt. Express 16, 12350–12361 (2008)

    Article  ADS  Google Scholar 

  63. J.A. Izatt, M.R. Hee, E.A. Swanson, C.P. Lin, D. Huang, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, Micrometer-scale resolution imaging of the anterior eye in-vivo with optical coherence tomography. Arch. Ophthalmol. 112, 1584–1589 (1994)

    Article  Google Scholar 

  64. K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, J.F. Le Gargasson, Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 45, 4126–4131 (2004)

    Article  Google Scholar 

  65. C. Kerbage, H. Lim, W. Sun, M. Mujat, J.F. de Boer, Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging. Opt. Express 15, 7117–7125 (2007)

    Article  ADS  Google Scholar 

  66. M. Gora, K. Karnowski, M. Szkulmowski, B.J. Kaluzny, R. Huber, A. Kowalczyk, M. Wojtkowski, Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt. Express 17, 14880–14894 (2009)

    Article  ADS  Google Scholar 

  67. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, M. Wojtkowski, Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. Opt. Express 17, 4842–4858 (2009)

    Article  ADS  Google Scholar 

  68. M.X. Shen, L.L. Cui, M. Li, D.X. Zhu, M.R. Wang, J.H. Wang, Extended scan depth optical coherence tomography for evaluating ocular surface shape. J. Biomed. Opt. 16, 056007 (2011)

    Article  ADS  Google Scholar 

  69. C.K.S. Leung, R.N. Weinreb, Anterior chamber angle imaging with optical coherence tomography. Eye 25, 261–267 (2011)

    Article  Google Scholar 

  70. W.J. Dupps, Anterior segment imaging: new milestones, new challenges. J. Cataract Refract. Surg. 32, 1779–1783 (2006)

    Article  Google Scholar 

  71. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, W. Drexler, In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid. Opt. Express 13, 3252–3258 (2005)

    Article  ADS  Google Scholar 

  72. B. Povazay, B. Hofer, C. Torti, B. Hermann, A.R. Tumlinson, M. Esmaeelpour, C.A. Egan, A.C. Bird, W. Drexler, Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. Opt. Express 17, 4134–4150 (2009)

    Article  ADS  Google Scholar 

  73. W. Wieser, T. Klein, D.C. Adler, F. Trépanier, C.M. Eigenwillig, S. Karpf, J.M. Schmitt, R. Huber, Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express 3, 2647–2657 (2012)

    Article  Google Scholar 

  74. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, S. Jiao, Optical coherence tomography for whole eye segment imaging. Opt. Express 20, 6109–6115 (2012)

    Article  ADS  Google Scholar 

  75. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, J.A. Izatt, Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival. Opt. Lett. 37, 1883–1885 (2012)

    Article  ADS  Google Scholar 

  76. I. Grulkowski, J.J. Liu, B. Baumann, B. Potsaid, C. Lu, J.G. Fujimoto, Imaging limbal and scleral vasculature using swept source optical coherence tomography. Photon. Lett. Poland 3, 132 (2011)

    Article  Google Scholar 

  77. J.J. Liu, I. Grulkowski, B. Potsaid, V. Jayaraman, A.E. Cable, M.F. Kraus, J. Hornegger, J.S. Duker, J.G. Fujimoto, 4D dynamic imaging of the eye using ultrahigh speed SS-OCT. Proc. SPIE 8567, 85670X (2013)

    Article  ADS  Google Scholar 

  78. M.A. Lemp, J.R. Hamill Jr., Factors affecting tear film breakup in normal eyes. Arch. Ophthalmol. 89, 103 (1973)

    Article  Google Scholar 

  79. C.K.-s. Leung, C.Y.L. Cheung, H. Li, S. Dorairaj, C.K.F. Yiu, A.L. Wong, J. Liebmann, R. Ritch, R. Weinreb, D.S.C. Lam, Dynamic analysis of dark–light changes of the anterior chamber angle with anterior segment OCT. Invest. Ophthalmol. Vis. Sci. 48, 4116–4122 (2007)

    Article  Google Scholar 

  80. C.Y.-l. Cheung, S. Liu, R.N. Weinreb, J. Liu, H. Li, D.Y.-l. Leung, S. Dorairaj, J. Liebmann, R. Ritch, D.S.C. Lam, Dynamic analysis of iris configuration with anterior segment optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 51, 4040–4046 (2010)

    Article  Google Scholar 

  81. A.D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, J.L. Connolly, J.G. Fujimoto, Q. Huang, Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy. J. Biomed. Opt. 15, 016025–016025 (2010)

    Article  ADS  Google Scholar 

  82. C. Zhou, D.W. Cohen, Y. Wang, H.-C. Lee, A.E. Mondelblatt, T.-H. Tsai, A.D. Aguirre, J.G. Fujimoto, J.L. Connolly, Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues. Cancer Res. 70, 10071–10079 (2010)

    Article  Google Scholar 

  83. H.-C. Lee, C. Zhou, D.W. Cohen, A.E. Mondelblatt, Y. Wang, A.D. Aguirre, D. Shen, Y. Sheikine, J.G. Fujimoto, J.L. Connolly, Integrated optical coherence tomography and optical coherence microscopy imaging of ex vivo human renal tissues. J. Urol. 187, 691–699 (2012)

    Article  Google Scholar 

  84. J.A. Izatt, M.R. Hee, G.M. Owen, E.A. Swanson, J.G. Fujimoto, Optical coherence microscopy in scattering media. Opt. Lett. 19, 590–592 (1994)

    Article  ADS  Google Scholar 

  85. A.D. Aguirre, P. Hsiung, T.H. Ko, I. Hartl, J.G. Fujimoto, High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging. Opt. Lett. 28, 2064–2066 (2003)

    Article  ADS  Google Scholar 

  86. S. Tang, Z. Chen, B.J. Tromberg, T.B. Krasieva, Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source. J. Biomed. Opt. 11, 020502–020502 (2006)

    Article  ADS  Google Scholar 

  87. S.-W. Huang, A.D. Aguirre, R.A. Huber, D.C. Adler, J.G. Fujimoto, Swept source optical coherence microscopy using a Fourier domain mode-locked laser. Opt. Express 15, 6210–6217 (2007)

    Article  ADS  Google Scholar 

  88. H.-C. Lee, J.J. Liu, Y. Sheikine, A.D. Aguirre, J.L. Connolly, J.G. Fujimoto, Ultrahigh speed spectral-domain optical coherence microscopy. Biomed. Opt. Express 4, 1236–1254 (2013)

    Article  Google Scholar 

  89. B.W. Graf, S.G. Adie, S.A. Boppart, Correction of coherence gate curvature in high numerical aperture optical coherence imaging. Opt. Lett. 35, 3120–3122 (2010)

    Article  ADS  Google Scholar 

  90. B.W. Graf, S.A. Boppart, Multimodal in vivo skin imaging with integrated optical coherence and multiphoton microscopy. IEEE J. Sel. Top. Quant. Electron. 18, 1280–1286 (2012)

    Article  Google Scholar 

  91. G.J. Tearney, S.A. Boppart, B.E. Bouma, M.E. Brezinski, N.J. Weissman, J.F. Southern, J.G. Fujimoto, Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt. Lett. 21, 543–545 (1996)

    Article  ADS  Google Scholar 

  92. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, J.G. Fujimoto, In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997)

    Article  Google Scholar 

  93. Z. Yaqoob, J. Wu, E.J. McDowell, X. Heng, C. Yang, Methods and application areas of endoscopic optical coherence tomography. J. Biomed. Opt. 11, 063001–063001 (2006)

    Article  ADS  Google Scholar 

  94. S.H. Yun, G.J. Tearney, B.J. Vakoc, M. Shishkov, W.Y. Oh, A.E. Desjardins, M.J. Suter, R.C. Chan, J.A. Evans, I.-K. Jang, N.S. Nishioka, J.F. de Boer, B.E. Bouma, Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006)

    Article  Google Scholar 

  95. D.C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, J.G. Fujimoto, Three-dimensional endomicroscopy using optical coherence tomography. Nat. Photon. 1, 709–716 (2007)

    Article  ADS  Google Scholar 

  96. M.J. Suter, B.J. Vakoc, P.S. Yachimski, M. Shishkov, G.Y. Lauwers, M. Mino-Kenudson, B.E. Bouma, N.S. Nishioka, G.J. Tearney, Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging. Gastrointest. Endosc. 68, 745–753 (2008)

    Article  Google Scholar 

  97. A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Snopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, O. Streltzova, In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Opt. Express 1, 432–440 (1997)

    Article  ADS  Google Scholar 

  98. A.D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, J.G. Fujimoto, High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe. Opt. Express 18, 4222–4239 (2010)

    Article  ADS  Google Scholar 

  99. X. Liu, M.J. Cobb, Y. Chen, M.B. Kimmey, X. Li, Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography. Opt. Lett. 29, 1763–1765 (2004)

    Article  ADS  Google Scholar 

  100. T.-H. Tsai, B. Potsaid, M.F. Kraus, C. Zhou, Y.K. Tao, J. Hornegger, J.G. Fujimoto, Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography. Biomed. Opt. Express 2, 2438–2448 (2011)

    Article  Google Scholar 

  101. Y. Pan, H. Xie, G.K. Fedder, Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt. Lett. 26, 1966–1968 (2001)

    Article  ADS  Google Scholar 

  102. J. Woonggyu, D.T. McCormick, Z. Jun, L. Wang, N.C. Tien, C. Zhongping, Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror. Appl. Phys. Lett. 88, 163901–163903 (2006)

    Article  ADS  Google Scholar 

  103. K.H. Kim, B.H. Park, G.N. Maguluri, T.W. Lee, F.J. Rogomentich, M.G. Bancu, B.E. Bouma, J.F. de Boer, J.J. Bernstein, Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography. Opt. Express 15, 18130–18140 (2007)

    Article  ADS  Google Scholar 

  104. J. Sun, S. Guo, L. Wu, L. Liu, S.-W. Choe, B.S. Sorg, H. Xie, 3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror. Opt. Express 18, 12065–12075 (2010)

    Article  ADS  Google Scholar 

  105. M.J. Gora, J.S. Sauk, R.W. Carruth, K.A. Gallagher, M.J. Suter, N.S. Nishioka, L.E. Kava, M. Rosenberg, B.E. Bouma, G.J. Tearney, Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat. Med. 19, 238–240 (2013)

    Article  Google Scholar 

  106. B.R. Biedermann, W. Wieser, C.M. Eigenwillig, T. Klein, R. Huber, Dispersion, coherence and noise of Fourier domain mode locked lasers. Opt. Express 17, 9947–9961 (2009)

    Article  ADS  Google Scholar 

  107. K.-S. Lee, J.P. Rolland, Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. Opt. Lett. 33, 1696–1698 (2008)

    Article  ADS  Google Scholar 

  108. B.A. Standish, K.K. Lee, A. Mariampillai, N.R. Munce, M.K. Leung, V.X. Yang, I.A. Vitkin, In vivo endoscopic multi-beam optical coherence tomography. Phys. Med. Biol. 55, 615 (2010)

    Article  Google Scholar 

  109. N. Weber, D. Spether, A. Seifert, H. Zappe, Highly compact imaging using Bessel beams generated by ultraminiaturized multi-micro-axicon systems. J. Opt. Soc. Am. A 29, 808–816 (2012)

    Article  ADS  Google Scholar 

  110. J. Mo, M. de Groot, J.F. de Boer, Focus-extension by depth-encoded synthetic aperture in optical coherence tomography. Opt. Express 21, 10048–10061 (2013)

    Article  ADS  Google Scholar 

  111. C. Chong, T. Suzuki, A. Morosawa, T. Sakai, Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source. Opt. Express 16, 21105–21118 (2008)

    Article  ADS  Google Scholar 

  112. C.H. Chong, T. Suzuki, K. Totsuka, A. Morosawa, T. Sakai, Large coherence length swept source for axial length measurement of the eye. Appl. Optics 48, D144–D150 (2009)

    Article  ADS  Google Scholar 

  113. J.G. Fujimoto, S. Desilvestri, E.P. Ippen, C.A. Puliafito, R. Margolis, A. Oseroff, Femtosecond optical ranging in biological systems. Opt. Lett. 11, 150–152 (1986)

    Article  ADS  Google Scholar 

  114. E.A. Swanson, D. Huang, M.R. Hee, J.G. Fujimoto, C.P. Lin, C.A. Puliafito, High-speed optical coherence domain reflectometry. Opt. Lett. 17, 151–153 (1992)

    Article  ADS  Google Scholar 

  115. J. Armstrong, M. Leigh, I. Walton, A. Zvyagin, S. Alexandrov, S. Schwer, D. Sampson, D. Hillman, P. Eastwood, In vivo size and shape measurement of the human upper airway using endoscopic long-range optical coherence tomography. Opt. Express 11, 1817–1826 (2003)

    Article  ADS  Google Scholar 

  116. R.A. McLaughlin, J.P. Williamson, M.J. Phillips, J.J. Armstrong, S. Becker, D.R. Hillman, P.R. Eastwood, D.D. Sampson, Applying anatomical optical coherence tomography to quantitative 3D imaging of the lower airway. Opt. Express 16, 17521–17529 (2008)

    Article  ADS  Google Scholar 

  117. S. Nezam, B.J. Vakoc, A.E. Desjardins, G.J. Tearney, B.E. Bouma, Increased ranging depth in optical frequency domain imaging by frequency encoding. Opt. Lett. 32, 2768–2770 (2007)

    Article  ADS  Google Scholar 

  118. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J.A. Izatt, D. Huang, Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br. J. Ophthalmol. 93, 634–637 (2009)

    Article  Google Scholar 

  119. A. Bradu, A.G. Podoleanu, Attenuation of mirror image and enhancement of the signal-to-noise ratio in a Talbot bands optical coherence tomography system. J. Biomed. Opt. 16, 076010 (2011)

    Article  ADS  Google Scholar 

  120. E. Jonathan, Dual reference arm low-coherence interferometer-based reflectometer for optical coherence tomography (OCT) application. Opt. Commun. 252, 202–211 (2005)

    Article  ADS  Google Scholar 

  121. M. Ruggeri, S.R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, J.M. Parel, Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch. Biomed. Opt. Express 3, 1506–1520 (2012)

    Article  Google Scholar 

  122. P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, R.K. Wang, Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate. J. Biomed. Opt. 18, 016012–016012 (2013)

    Article  ADS  Google Scholar 

  123. T. Olsen, Calculation of intraocular lens power: a review. Acta Ophthalmol. Scand. 85, 472–485 (2007)

    Article  Google Scholar 

  124. F. Jansson, Measurements of intraocular distances by ultrasound. Acta. Ophthalmol. 41, 9–48 (1963)

    Article  Google Scholar 

  125. A.F. Fercher, K. Mengedoht, W. Werner, Eye-length measurement by interferometry with partially coherent light. Opt. Lett. 13, 186–188 (1988)

    Article  ADS  Google Scholar 

  126. C.K. Hitzenberger, Optical measurement of the axial eye length by laser Doppler interferometry. Invest. Ophthalmol. Vis. Sci. 32, 616–624 (1991)

    Google Scholar 

  127. C.K. Hitzenberger, W. Drexler, C. Dolezal, F. Skorpik, M. Juchem, A.F. Fercher, H.D. Gnad, Measurement of the axial length of cataract eyes by Laser-Doppler Interferometry. Invest. Ophthalmol. Vis. Sci. 34, 1886–1893 (1993)

    Google Scholar 

  128. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)

    Article  ADS  Google Scholar 

  129. W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, A.F. Fercher, Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J. Ophthalmol. 126, 524–534 (1998)

    Article  Google Scholar 

  130. J. Santodomingo-Rubido, E.A.H. Mallen, B. Gilmartin, J.S. Wolffsohn, A new non-contact optical device for ocular biometry. Br. J. Ophthalmol. 86, 458–462 (2002)

    Article  Google Scholar 

  131. H. Eleftheriadis, IOLMaster biometry: refractive results of 100 consecutive cases. Br. J. Ophthalmol. 87, 960–963 (2003)

    Article  Google Scholar 

  132. P.J. Buckhurst, J.S. Wolffsohn, S. Shah, S.A. Naroo, L.N. Davies, E.J. Berrow, A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br. J. Ophthalmol. 93, 949–953 (2009)

    Article  Google Scholar 

  133. K. Takei, Y. Sekine, F. Okamoto, S. Hommura, Measurement of axial length of eyes with incomplete filling of silicone oil in the vitreous cavity using X ray computed tomography. Br. J. Ophthalmol. 86, 47–50 (2002)

    Article  Google Scholar 

  134. G. Bencic, Z. Vatavuk, M. Marotti, V.L. Loncar, I. Petric, B. Andrijevic-Derk, J. Skunca, Z. Mandic, Comparison of A-scan and MRI for the measurement of axial length in silicone oil-filled eyes. Br. J. Ophthalmol. 93, 502–505 (2009)

    Article  Google Scholar 

  135. C.Q. Zhou, J.H. Wang, S.L. Jiao, Dual channel dual focus optical coherence tomography for imaging accommodation of the eye. Opt. Express 17, 8947–8955 (2009)

    Article  ADS  Google Scholar 

  136. J.J. Liu, I. Grulkowski, M.F. Kraus, B. Potsaid, C.D. Lu, B. Baumann, J.S. Duker, J. Hornegger, J.G. Fujimoto, In vivo imaging of the rodent eye with swept source/Fourier domain OCT. Biomed. Opt. Express 4, 351–363 (2013)

    Article  Google Scholar 

  137. B. Grajciar, M. Pircher, C.K. Hitzenberger, O. Findl, A.F. Fercher, High sensitive measurement of the human axial eye length in vivo with Fourier domain low coherence interferometry. Opt. Express 16, 2405–2414 (2008)

    Article  ADS  Google Scholar 

  138. A. Tao, Y. Shao, J. Zhong, H. Jiang, M. Shen, J. Wang, Versatile optical coherence tomography for imaging the human eye. Biomed. Opt. Express 4, 1031–1044 (2013)

    Article  Google Scholar 

  139. I. Grulkowski, J.J. Liu, J.Y. Zhang, B. Potsaid, V. Jayaraman, A.E. Cable, J.S. Duker, J.G. Fujimoto, Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Ophthalmology 120, 2184–2190 (2013)

    Article  Google Scholar 

  140. I. Grulkowski, J.J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J.G. Fujimoto, A.E. Cable, High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source. Opt. Lett. 38, 673–675 (2013)

    Article  ADS  Google Scholar 

  141. S. Kuwamura, I. Yamaguchi, Wavelength scanning profilometry for real-time surface shape measurement. Appl. Opt. 36, 4473–4482 (1997)

    Article  ADS  Google Scholar 

  142. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, T. Kurokawa, Optical frequency-domain imaging microprofilometry with a frequency-tunable liquid-crystal Fabry-Perot etalon device. Appl. Opt. 38, 7063–7068 (1999)

    Article  ADS  Google Scholar 

  143. S.H. Wang, C.J. Tay, Application of an optical interferometer for measuring the surface contour of micro-components. Meas. Sci. Technol. 17, 617 (2006)

    Article  ADS  Google Scholar 

  144. V. Srinivasan, H.C. Liu, M. Halioua, Automated phase-measuring profilometry: a phase mapping approach. Appl. Opt. 24, 185–188 (1985)

    Article  ADS  Google Scholar 

  145. D.C. Adler, R. Huber, J.G. Fujimoto, Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers. Opt. Lett. 32, 626–628 (2007)

    Article  ADS  Google Scholar 

  146. K. Yuksel, M. Wuilpart, V. Moeyaert, P. Megret, Optical frequency domain reflectometry: a review, in 11th International Conference on Transparent Optical Networks, 2009. ICTON ‘09, (2009), p. 1–5

    Google Scholar 

  147. R.C. Youngquist, S. Carr, D.E.N. Davies, Optical coherence-domain reflectometry: a new optical evaluation technique. Opt. Lett. 12, 158–160 (1987)

    Article  ADS  Google Scholar 

  148. U. Glombitza, E. Brinkmeyer, Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides. J. Lightwave Technol. 11, 1377–1384 (1993)

    Article  ADS  Google Scholar 

  149. K. Yüksel, M. Wuilpart, and P. Mégret, Optical-Frequency Domain Reflectometry: Roadmap for High-Resolution Distributed Measurements, in Proceedings of the IEEE Laser and Electro-Optics Society Symposium-Benelux Chapter, (2007), pp. 231–234

    Google Scholar 

  150. W.V. Sorin, D.F. Gray, Simultaneous thickness and group index measurement using optical low-coherence reflectometry. IEEE Photon. Technol. Lett. 4, 105–107 (1992)

    Article  ADS  Google Scholar 

  151. H. Kao-Yang, G.M. Carter, Coherent optical frequency domain reflectometry (OFDR) using a fiber grating external cavity laser. IEEE Photon. Technol. Lett. 6, 1466–1468 (1994)

    Article  ADS  Google Scholar 

  152. P. Oberson, B. Huttner, O. Guinnard, L. Guinnard, G. Ribordy, N. Gisin, Optical frequency domain reflectometry with a narrow linewidth fiber laser. IEEE Photon. Technol. Lett. 12, 867–869 (2000)

    Article  ADS  Google Scholar 

  153. W. Wieser, B.R. Biedermann, T. Klein, C.M. Eigenwillig, R. Huber, Ultra-rapid dispersion measurement in optical fibers. Opt. Express 17, 22871–22878 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Osman Ahsen, WooJhon Choi, Dr. Al-Hafeez Dhalla, ByungKun Lee, Hsiang-Chieh Lee, Chen D. Lu, Kathrin Mohler, Dr. Yuankai Tao, and Dr. Tsung-Han Tsai from the Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics at the Massachusetts Institute of Technology; Dr. David Huang from Oregon Health and Science University; Dr. Jay S. Duker, Mehreen Ahdi, and Jason Y. Zhang from the New England Eye Center at the Tufts University; Dr. Bernhard Baumann from Medical University of Vienna; Dr. Joachim Hornegger and Martin F. Kraus from University of Erlangen; and Dr. James Jiang from Thorlabs Inc. The studies were supported by the National Institutes of Health (R01-EY011289-27, R01-EY013178-12, R01-EY018184-05, R01-CA075289-16, R01-EY019029-03, R01-NS057476-05, R44-CA101067-05, R44-EY022864-01) and the Air Force Office for Scientific Research (FA9550-10-1-0551, FA9550-10-1-0063, FA9550-12-1-0499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ireneusz Grulkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Grulkowski, I., Liu, J.J., Potsaid, B., Jayaraman, V., Cable, A.E., Fujimoto, J.G. (2015). Ultrahigh Speed OCT. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_11

Download citation

Publish with us

Policies and ethics