Skip to main content

Homoepitaxy on Porous Silicon

  • Reference work entry
  • First Online:
Book cover Handbook of Porous Silicon
  • 3565 Accesses

Abstract

Homoepitaxy on porous Si aims at producing monocrystalline thin silicon-on-insulator wafers or monocrystalline thin Si solar cells. There are two methods of preparation of the porous Si layer for homoepitaxy: on the one hand, the porous Si is reorganized at elevated temperatures to close the surface as a seed layer for epitaxy, and on the other hand, the reorganization of the porous Si is avoided to keep the open pore structure. For homoepitaxy on the porous Si layers, most research has been reported on the usage of atmospheric pressure chemical vapor deposition (APCVD). The quality of epitaxially grown Si layers, using different deposition techniques and various types of porous silicon, was assessed by etch pit density, minority carrier lifetime, Hall mobility, microscopy, and device performance. It can be concluded that APCVD is in combination with a closed porous Si surface layer as a seed layer, the most promising approach to produce high-quality epitaxial layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berger S, Quoizola S, Fave A, Ouldabbes A, Kaminski A, Perichon S, Chabane-Sari N-E, Barbier D, Laugier A (2001) Liquid phase epitaxial growth of silicon on porous silicon for photovoltaic applications. Crystal Res Technol 36(8–10):1005–1010

    Article  Google Scholar 

  • Boucherif A, Blanchard NP, Regreny P, Marty O, Guillot G, Grenet G, Lysenko V (2010) Tensile strain engineering of Si thin films using porous Si substrates. Thin Solid Films 518(9):2466–2469

    Article  Google Scholar 

  • Brendel R (1997) A novel process for ultrathin monocrystalline silicon solar cells on glass. In: 14th European photovoltaic solar energy conference and exhibition, Barcelona, July 1997. H. S. Stephens & Associates, Bedford, pp 1354–1358

    Google Scholar 

  • Brendel R (2003) Thin-film crystalline silicon solar cells – physics and technology. Weinheim, Wiley, pp 126–131

    Book  Google Scholar 

  • Brendel R, Scholten D, Schulz M (1998a) Waffle cells fabricated by the perforated silicon process PSI. In: 2nd WCPVSEC, Vienna, 1998. Joint Research Centre European Commission, Ispra, pp 1442–1447

    Google Scholar 

  • Brendel R, Artmann H, Oelting S, Frey W, Werner JH, Queisser HJ (1998b) Monocrystalline Si waffles for thin solar cells fabricated by the novel perforated-silicon process. Appl Phys A Mater Sci Process, 67(2):151–154

    Article  Google Scholar 

  • Cai H, Shen H, Zhang L, Huang H, Lu L, Tang Z, Shen J (2010) Silicon epitaxy on textured double layer porous silicon by LPCVD. Phys B Condens Mater 405:3852–3856

    Article  Google Scholar 

  • Celler GK, Cristoloveanu S (2003) Frontiers of silicon-on-insulator. J Appl Phys 93(9):4955

    Article  Google Scholar 

  • Chemakin AV, Neizvestny IG, Shwartz NL, Yanovitskaya ZS, Zverev AV (2002) Evolution of prous Si(111) and Si(001) surfaces during epitaxy: simulation. Phys Low-Dim Struct 9–10:7–21

    Google Scholar 

  • Fave A, Quoizola S, Kraiem J, Kaminski A, Lemiti M, Laugier A (2004) Comparative study of LPE and VPE silicon thin film on porous sacrificial layer. Thin Solid Films 451–452:308–311

    Article  Google Scholar 

  • Green M, Emery K, Hishikawa Y, Warta W, Dunlop ED (2013) Solar cell efficiency tables (version 41). Progr Photovoltaics Res Appl 21:1–11

    Article  Google Scholar 

  • Guoliang Z, Chi S, Yongliang F, Xiangiju Z, Mingren Y, Yiping H (1991) SOI structure formed by molecular beam epitaxial growth of single crystalline Si on porous-Si substrates. Chinese J Semiconductors 12(5):289–293

    Google Scholar 

  • Halimaoui A, Campidelli Y, Badoz PA, Bensahel D (1995) Covering and filling of porous silicon pores with Ge and Si using chemical vapor deposition. J Appl Phys 78(5):3428

    Article  Google Scholar 

  • Hering G, Martinez G (2012) Zum Abheben. Photon 11:28–32

    Google Scholar 

  • Hitchman ML, Jensen KF (1993a) Chemical vapor deposition principles and applications. Academic, London, pp 221–227

    Google Scholar 

  • Hitchman ML, Jensen KF (1993b) Chemical vapor deposition Principles and applications. Academic, London, pp 159–162

    Google Scholar 

  • Huang Y-P, Zhu S-Y, Li A-Z, Wang J, Huang J-Y, Ye Z-Z (2001) Epitaxial growth of high-quality silicon films on double-layer porous silicon. Chinese Phys Lett 18(11):1507

    Article  Google Scholar 

  • Ito T, Yasumatsu T, Hiraki A (1990) Homoepitaxial growth of silicon on anodized porous silicon. Appl Surf Sci 44:97–102

    Article  Google Scholar 

  • Jin S, Bender H, Stalmans L, Bilyalov R, Poortmans J, Loo R, Caymax M (2000) Transmission electron microscopy investigation of the crystallographic quality of silicon films grown epitaxially on porous silicon. J Crystal Growth 212:119–127

    Article  Google Scholar 

  • Kraiem J, Nichiporuk O, Tranvouez E, Quoizola S, Fave A, Descamps A, Bremond G, Lemiti M (2005) Adaptation of lpe process to silicon thin film epitaxial growth on porous silicon for photovoltaic applications. In: 20th European photovoltaic solar energy conference and exhibition, Barcelona, June 2005. WIP-Renewable Energy, Munich, pp 1423–1426

    Google Scholar 

  • Krinke J, Kuchler G, Brendel R, Artmann H, Frey W, Oelting S, Schulz M, Strunk HP (1999) Microstructure and electrical properties of epitaxial layers deposited on silicon by ion assisted deposition. In: Technical digest of the international PVSEC-11, Sapporo, 1999. Int. PVSEC Publishing, Kyoto, pp 757–758

    Google Scholar 

  • Kuchler G, Scholten D, Müller G, Krinke J, Auer R, Brendel R (2000) Fabrication of textured monocrystalline Si-films using the porous silicon (PSI) -process. In: 16th European photovoltaic solar energy conference and exhibition, Glasgow, May 2000. James & James (Science Publisher), London, pp. 1–4

    Google Scholar 

  • Kunz T, Burkert I, Grosch M, Scheffler M, Auer R (2006) Spatial uniformity of large-area silicon layers (43 × 43 cm2) grown by convection-assisted chemical vapor deposition. In: IEEE PVSC Hawaii, pp 1620–1623

    Google Scholar 

  • Labunov V, Bondarenko V, Klinenko L, Dorofeev A, Tabulina L (1986) Heat treatment effect on porous silicon. Thin Solid Films 137:123–134

    Article  Google Scholar 

  • Lin TL, Chen SC, Kao YC, Wang KL, Iyer S (1986) 100-μm-wide silicon-on-insulator structures by Si molecular beam epitaxy growth on porous silicon. Appl Phys Lett 48(26):1793

    Article  Google Scholar 

  • Moslehi M, Kapur P, Kramer J, Rana V, Seutter S, Deshpande A, Stalcup T, Kommera S, Ashjaee J, Calcaterra A, Grupp D, Dutton D, Brown R (2012) World-record 20.6% efficiency 156mm x 156mm full-square solar cells using low-cost kerfless ultrathin epitaxial silicon and porous silicon lift-off technology for industry-leading high-performance smart PV modules. In: Pacific conference (APVIA/PVAP), Singapore, 2012

    Google Scholar 

  • Nishida S, Nakagawa K, Iwane M (2001) Si-film growth using liquid phase epitaxy method and its application to thin-film crystalline Si solar cell. Sol Energy Mater Sol Cells 65:525–532

    Article  Google Scholar 

  • Novikov PL, Alexsandrov LN, Dvurechenskii AV, Zinovyev VA (1999) Modelling of initial stage of Silicon epitaxy on porous silicon (111) surface. Phys Low-Dim Struct 1(2):179–188

    Google Scholar 

  • Oberbeck L, Schmidt J, Wagner A, Bergmann RB (2001) High-rate deposition of epitaxial layers for efficient low temperature thin film epitaxial silicon solar cells. Prog Photovoltaics Res Appl 9:333–340

    Article  Google Scholar 

  • Oelting S, Martini D, Bonnet D (1992) Ion assisted deposition of Si films for solar cells. In: 11th European photovoltaic solar energy conference and exhibition, Montreux, 1992. Harwood Academic Publisher, Chur, pp 491–494

    Google Scholar 

  • Oelting S, Martini D, Bonnet D (1994) Crystalline thin-film silicon solar cells by ion assisted deposition. In: 12th European photovoltaic solar energy conference and exhibition, Amsterdam, 1994. H. S. Stephens & Associates, Bedford, p. 1815

    Google Scholar 

  • Oules C, Halimaoui A, Regolino JL, Terio A, Bomchil G (1992) Silicon on Insulator structures obtained by epitaxial growth of silicon over porous silicon. J Electrochem Soc 139(12):3595

    Article  Google Scholar 

  • Petermann JH, Zielke D, Schmidt J, Haase F, Rojas EG, Brendel R (2012a) 19%-efficient and 43 μm-thick crystalline Si solar cell from layer transfer using porous silicon. Prog Photovoltaics Res Appl 20:1–5

    Google Scholar 

  • Petermann JH, Ohrdes T, Altermatt PP, Eidelloth S, Brendel R (2012b) 19% efficient thin-film crystalline silicon solar cells from layer transfer using porous silicon: a loss analysis by means of three-dimensional simulations. IEEE Trans Electron Devices 59(4):909–917

    Google Scholar 

  • Poortmans J, Beaucarne G, Sivoththaman S (2000) Study of Si deposition in a batch-type LPCVD-system for industrial thin-film crystalline Si solar cells. In: Conference record of the twenty-eighth IEEE photovoltaic specialists conference – 2000 (Cat. No.00CH37036), Anchorage, 2000. IEEE, New York, pp. 347–350

    Google Scholar 

  • Rauh H (1989) Wacker’s atlas for characterization of defects in silicon. Burghausen, Wacker-Chemitronic, p 64

    Google Scholar 

  • Reber S, Arnold M, Pocza D, Schillinger N (2009) ConCVD and ProConCVD: development of high-throughput CVD tools on the way to low-cost silicon epitaxy. In: 19th European photovoltaic solar energy conference, Hamburg, September 2009. WIP-Renewable Energy, Munich, pp 21–25

    Google Scholar 

  • Reber S, Pocza D, Keller M, Arnold M, Schillinger N, Krogull D (2012) Advances in equipment and process development for high-throughput continuous silicon epitaxy. In: 27th European photovoltaic solar energy conference and exhibition, Frankfurt. WIP-Renewable Energy, Munich, pp 2466–2470

    Google Scholar 

  • Sakaguchi K, Sato N, Yamagata K (1995) Extremely high selective etching of porous Si for single etch-stop bond-and-etch-back silicon-on-insulator. Jpn J Appl Phys 34:842–847

    Article  Google Scholar 

  • Sakaguchi K, Sato N, Yamagata K, Atoji T, Fujiyama Y, Nakayama J, Yonehara T (1997) Current progress in epitaxial layer transfer (ELTRAN). IEICE Trans Electron 80(3):378–387

    Google Scholar 

  • Sato N, Sakaguchi K, Yamagata K (1996a) Advanced quality in epitaxial layer transfer by bond and etch-back of porous Si. Jpn J Appl Phys 35:973–977

    Article  Google Scholar 

  • Sato N, Sakaguchi K, Yamagata K (1996b) Advanced quality in epitaxial layer transfer by bond and etch-back of porous Si. Jpn J Appl Phys 35:973–977

    Article  Google Scholar 

  • Schöfthaler M, Brendel R, Langguth G, Werner JH (1994) High-quality surface passivation by corona-charged oxides for semiconductor surface characterization. In: 1st World conference, photovoltaic energy conversion, Waikoloa, 1994. IEEE, New York, pp 1509–1513

    Google Scholar 

  • Secco d’ Aragona F (1972) Dislocation etch for (100) planes in silicon. J Electrochem Soc 119(7):948

    Article  Google Scholar 

  • Tayanaka H, Matsushita T (1996) Separation of thin epitaxial films on porous Si for solar cells. In: Proceedings of the 6th Sony research forum, Tokyo, 1996. Sony, Tokyo, p 556

    Google Scholar 

  • Tayanaka H, Yamauchi K, Matsushita T (1998) Thin-film crystalline silicon solar cells obtained by separation of a porous silicon sacrificial layer. In: 2nd WCPVSEC, Vienna, 1998. Joint Research Centre European Commission, Ispra, pp 1272–1277

    Google Scholar 

  • Tayanaka H, Yamauchi K, Matsushita T (1999) High minority carrier lifetime in single crystal silicon thin-films on porous silicon sacrificial layer. In: Technical digest of the international PVSEC-11, Sapporo, 1999. Int. PVSEC Publishing, Kyoto, pp 543–544

    Google Scholar 

  • Tayanaka H, Nagasawa A, Hiroshimaya N, Sato K, Haraguchi Y, Matsuhita T (2001) Effect of crystal defects in single crystalline Si thin-film solar cells. In: 17th European photovoltaic solar energy conference and exhibition, Munich, October 2001. WIP-Renewable Energy/ETA, Munich/Florence, pp 1400–1403

    Google Scholar 

  • Terheiden B, Kunz T, Burkert I, Horbelt R, Plagwitz P, Brendel R (2008) Crystalline silicon thin-film solar cells from the porous silicon process applying convection assisted chemical vapor deposition. In: 23rd European photovoltaic solar energy conference and exhibition, Valencia, September 2008. WIP-Renewable Energy, Munich, pp 2049–2052

    Google Scholar 

  • Terheiden B, Hensen J, Wolf A, Horbelt R, Plagwitz H, Brendel R (2011) Layer transfer from chemically etched 150 mm porous Si substrates. Materials (Basel) 4(5):941–951

    Article  Google Scholar 

  • Unagami T, Seki M (1978) Structure of porous layer and heat treatment effect. J Electrochem Soc Solid State Sci Technol 125(8):1339–1343

    Google Scholar 

  • Van Nieuwenhuysen K, Van Gestel D, Kuzma I, Duerinckx F, Beaucarne G, Poortmans J (2005) Characterization of thin silicon films grown in a batch-type LP-CVD system. In: 20th European photovoltaic solar energy conference, 6–10 June 2005, Barcelona, 2005, WIP-Renewable Energy, Munich, pp 1251–1254

    Google Scholar 

  • Van Nieuwenhuysen K, Depauw V, Martini R, Govaerts J, Debucquoy M, Radhakrishnan S, Gordon I, Bearda T, Baert K, Poortmans J (2012) High quality epitaxial foils, obtained by a porous silicon based layer transfer process, for integration in back contacted solar cells. In: 27th European photovoltaic solar energy conference and exhibition, Frankfurt, 2012. WIP-Renewable Energy, Munich, pp 2471–2474

    Google Scholar 

  • Wolf A, Terheiden B, Brendel R (2007) Autodiffusion: a novel method for emitter formation in crystalline silicon thin-film solar cells. Prog Photovolt Res Appl 15:199–210

    Article  Google Scholar 

  • Yonehara T, Sakaguchi K (2001) ELTRAN®; Novel SOI Wafer Technology. Jpn Soc Appl Phys 4(4):10–16

    Google Scholar 

  • Yonehara T, Sakaguchi K (2002) ELTRAN® (SOI-Epi WaferTM) technology. In: Progress in SOI structures and devices operating at extreme conditions. Kluwer, Dordrecht, pp 39–86

    Chapter  Google Scholar 

  • Yonehara T, Sakaguchi K, Sato N (1994) Epitaxial layer transfer by bond and etch back of porous Si. Appl Phys Lett 64(16):2108

    Article  Google Scholar 

  • Zheng DW, Cui Q, Huang YP, Zhang XJ, Kwor R, Li AZ, Tang TA (1998) A low temperature Silicon-on-insulator fabrication process using Si MBE on double-layer porous silicon. J Electrochem Soc 145(5):1668–1671

    Article  Google Scholar 

  • Zverev AV, Neizvestny IG, Shvarts NL, Yanovitskaya ZS (2001) The simulation of epitaxy, sublimation, and annealing processes in a 3D silicon surface layer. Semiconductors 35(9):1067–1074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Terheiden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Terheiden, B. (2014). Homoepitaxy on Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_58

Download citation

Publish with us

Policies and ethics