Skip to main content

Deep Impact and Related Missions

  • Reference work entry
Handbook of Cosmic Hazards and Planetary Defense

Abstract

This chapter reviews the history of and the results from the Deep Impact mission, its extension as the EPOXI mission, and its further extension as a remote observatory for cometary studies. The mission has had a major impact on the understanding of comets and on their role in solar system formation. It has also provided considerable information needed for planetary defense against Near-Earth Objects (NEOs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A’Hearn MF (2008) Deep impact and the origin and evolution of cometary nuclei. Space Sci Rev 138:237–246

    Article  Google Scholar 

  • A’Hearn MF, Belton MJS (2005) Deep impact: a large-scale active experiment on a cometary nucleus. Space Sci Rev 117:1–21

    Article  Google Scholar 

  • A’Hearn MF, Belton MJS, Delamere WA, Kissel J, Klaasen KP et al (2005) Deep impact: excavating comet temple 1. Science 310:258–264

    Article  Google Scholar 

  • A’Hearn MF, Belton MJS, Delamere WA, Feaga LM, Hampton D et al (2011) EPOXI at Comet Hartley 2. Science 332:1396–1400

    Article  Google Scholar 

  • A’Hearn MF, Feaga LM, Keller HU, Kawakita H, Hampton DL et al (2012) Cometary volatiles and the origin of comets. Astrophys J 758:29 (8 pp)

    Article  Google Scholar 

  • Belton MJS (2014) The size-distribution of scattered disk TNOs from that of JFCs between 0.2 and 15 km effective radius. Icarus 231:168–182

    Google Scholar 

  • Belton MJS, A’Hearn MF (1999) Deep sub-surface exploration of cometary nuclei. Adv Space Res 24:1167–1173

    Article  Google Scholar 

  • Belton MJS, Thomas P, Veverka J, Schultz P, Hearn A et al (2007) The internal structure of Jupiter family cometary nuclei from deep impact observations: the “Talps” or “Layered Pile” model. Icarus 187:332–344

    Article  Google Scholar 

  • Belton MJS, Thomas P, Li J-Y, Williams J, Carcich B et al (2013) The complex spin state of 103P/Hartley 2: kinematics and orientation in space. Icarus 222:595–609

    Article  Google Scholar 

  • Biver N, Bockelée-Morvan D, Boissier J, Crovisier J, Colom P et al (2007) Radio observations of Comet 9P/Tempel 1 before and after deep impact. Icarus 187:253–271

    Article  Google Scholar 

  • Blume WH (2005) Deep impact mission design. Space Sci Rev 117:23–42

    Article  Google Scholar 

  • Busko I, Lindler D, A’Hearn MF, White RL (2007) Searching for the deep impact crater on Comet 9P/Tempel 1 using image processing techniques. Icarus 187:56–68

    Article  Google Scholar 

  • Clarke AC (1968) 2001, A space Odyssey. Signet Books, New York (Chap 18)

    Google Scholar 

  • Ernst CM, Schultz PH (2007) Evolution of the deep impact flash: implications for the nucleus surface based on laboratory experiments. Icarus 190:334–344

    Article  Google Scholar 

  • Farnham TL, Bodewits D, Li J-Y, Veverka J, Thomas P et al (2013) Connections between the jet activity and surface features on Comet 9P/ Tempel 1. Icarus 222:540–549

    Article  Google Scholar 

  • Feaga LM, A’Hearn MF, Sunshine JM, Groussin O, Farnham TL (2007) Asymmetries in the distribution of H2O and CO2 in the inner Coma of Comet 9P/Tempel 1 as observed by deep impact. Icarus 190:345–356

    Article  Google Scholar 

  • Feaga LM, A’Hearn MF, Farnham TL, Bodewits D, Sunshine JM et al (2014) Uncorrelated volatile behavior during the 2011 apparition of Comet C/2009 P1 Garradd. Astron J 147:24

    Article  Google Scholar 

  • Hampton DL, Baer JW, Huisjen MA, Varner CC, Delamere A et al (2005) An overview of the instrument suite for the deep impact mission. Space Sci Rev 117:43–93

    Article  Google Scholar 

  • Harwit M (1984) Cosmic discovery: the search, scope, and heritage of astronomy. MIT Press, Cambridge, MA

    Google Scholar 

  • Hermalyn B, Farnham TL, Collins SM, Kelley MS, A’Hearn MF et al (2013) The detection, localization, and dynamics of large Icy particles surrounding Comet 103P/Hartley 2. Icarus 222:625–633

    Article  Google Scholar 

  • Holsapple KA, Housen KR (2007) A crater and its Ejecta: an interpretation of deep impact. Icarus 187:345–356

    Article  Google Scholar 

  • Keller HU, Küppers M, Fornasier S, Gutiérrez PJ, Hviid SF et al (2007) Observations of Comet 9P/Tempel 1 around the deep Impact event by the OSIRIS cameras onboard Rosetta. Icarus 187:87–103

    Article  Google Scholar 

  • Kelley MS, Lindler DJ, Bodewits D, A’Hearn MF, Lisse CM et al (2013) A distribution of large particles in the Coma of Comet 103P/Hartley 2. Icarus 222:634–652

    Article  Google Scholar 

  • Lindler DJ, A’Hearn MF, Besse S, Carcich B, Hermalyn B et al (2013) Interpretation of results of deconvolved images from the deep impact spacecraft high resolution instrument. Icarus 222:571–579

    Article  Google Scholar 

  • Mastrodemos N, Kubitschek DG, Synnott SP (2005) Autonomous navigation for the deep impact mission encounter with Comet Tempel 1. Space Sci Rev 117:95–121

    Article  Google Scholar 

  • Meech KJ, Kleyna J, Hainaut OR, Lowry SC, Fuse T et al (2013) The demise of Comet 85P/Boethin, the first EPOXI mission target. Icarus 222:662–678

    Article  Google Scholar 

  • Mommert M, Hora JL, Harris AW, Reach WT, Emery JP et al (2014) The discovery of cometary activity in Near-Earth asteroid (3552) Don Quixote. Astrophys J 781:25

    Article  Google Scholar 

  • NASA’s Planetary Data System (PDS). http://pds.nasa.gov/. Accessed July 2014

  • Ootsubo T, Kawakita H, Hamada S, Kobayashi H, Yamaguchi M et al (2012) AAKARI near-infrared spectroscopic survey for CO2 in 18 Comets. Astrophys J 752:15 (12pp)

    Article  Google Scholar 

  • Pieters CM, Goswami JN, Clark RN, Annadurai M, Boardman J et al (2009) Character and spatial distribution of OH/H2O on the surface of the moon seen by M3 on Chandrayaan-1. Science 326:568–572

    Article  Google Scholar 

  • Richardson JE, Melosh HJ (2013) An examination of the deep impact Collision site on Comet Tempel 1 via Stardust-NExT: placing further constraints on cometary surface properties. Icarus 222:492–501

    Article  Google Scholar 

  • Richardson JE, Melosh HJ, Lisse CM, Carcich B (2007) A ballistics analysis of the deep impact Ejecta plume: determining Comet Tempel 1’s gravity, mass, and density. Icarus 190:357–390

    Article  Google Scholar 

  • Schleicher DG, Barnes KL, Baugh NF (2006) Photometry and imaging results for Comet 9P/Tempel 1 and deep impact: gas production rates, Postimpact Light Curves, and Ejecta Plume Morphology. Astron J 131:1130–1137

    Article  Google Scholar 

  • Schultz PH, Hermalyn B, Veverka J (2013) The deep impact crater on 9P/Tempel-1 from Stardust-NExT. Icarus 222:502–515

    Article  Google Scholar 

  • Small Bodies Node of PDS. http://pdssbn.astro.umd.edu/. Accessed July 2014

  • Sunshine JM, A’Hearn MF, Groussin O, Li J-Y, Belton MJS et al (2006) Exposed water ice deposits on the surface of Comet 9P/Tempel 1. Science 311:1453–1455

    Article  Google Scholar 

  • Sunshine JM, Farnham TL, Feaga LM, Groussin O, Merlin F et al (2009) Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 326:565–568

    Article  Google Scholar 

  • Veverka J, Klaasen K, A’Hearn M, Belton M, Brownlee D et al (2013) Return to Comet Tempel 1: overview of Stardust-NExT results. Icarus 222:424–435

    Article  Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    Article  Google Scholar 

  • Weaver HA, Feldman PD, A’Hearn MF, Dello Russo N, Stern SA (2011) The carbon monoxide abundance in Comet 103P/Hartley 2 During the EPOXI Flyby. Astrophys J Lett 734:L5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. A’Hearn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland (outside the USA)

About this entry

Cite this entry

A’Hearn, M.F., Johnson, L.N. (2015). Deep Impact and Related Missions. In: Pelton, J., Allahdadi, F. (eds) Handbook of Cosmic Hazards and Planetary Defense. Springer, Cham. https://doi.org/10.1007/978-3-319-03952-7_43

Download citation

Publish with us

Policies and ethics