Skip to main content

Microbial of Extracellular Polysaccharide Production from Biomass Sources

Polysaccharides

Abstract

The interest in bio-based polymers, especially extracellular polysaccharides (EPSs), has increased considerably in recent years due to their useful physicochemical and rheological properties and diverse functionality. Microbial polysaccharides have many commercial applications in different industrial sectors like chemical, food, petroleum, health, and bionanotechnology. Although microbial EPS production processes are regarded as environmentally friendly and in full compliance with the biorefinery concept, EPSs constitute only a minor fraction of the current polymer market due to their cost-intensive production and recovery. For that reason, much effort has been spent to the development of cost-effective production processes by using cheaper fermentation substrates such as low-cost biomass resources. These resources are generally either in liquid form like syrups, molasses, juices, cheese whey, and olive mill wastewater or solid-like lignocellulosic biomass and pomaces. In this chapter, after a brief description of microbial polysaccharides, submerged and solid-state fermentation processes utilizing cheap biomass resources are discussed with a special focus on the microbial production of EPSs with high market value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel Hafez AM, Abdelhady HM, Sharaf MS, El-Tayeb TS (2007) Bioconversion of various industrial by – products and agricultural wastes into pullulan. J Appl Sci Res 3(11):1416–1425

    CAS  Google Scholar 

  • Abdel-Aziz SM, Hamed HA, Mouafi FE (2012a) Acidic exopolysaccharide flocculant produced by the fungus Mucor rouxii using beet-molasses. Res Biotechnol 3(6):01–13

    Google Scholar 

  • Abdel-Aziz SM, Hamed HA, Mouafi FE, Gad AS (2012b) Acidic pH-shock induces the production of an exopolysaccharide by the fungus Mucor rouxii: utilization of beet-molasses. N Y Sci J 5(2):52–61

    Google Scholar 

  • Aguilera M, Quesada MT, Aguila VG, Morillo JA, Rivadeneyra MA, Romos-Cormenzana A, Monteoliva-Sanchez M (2008) Characterization of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill wastewaters. Bioresour Technol 99:5640–5644

    Article  PubMed  CAS  Google Scholar 

  • Ateş Ö, Toksoy Öner E, Arga KY (2011) Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043. BMC Syst Biol 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Ateş Ö, Arga KY, Toksoy Öner E (2013) The stimulatory effect of mannitol on levan biosynthesis: lessons from metabolic systems analysis of Halomonas smyrnensis AAD6(T). Biotechnol Prog 29:1386–1397

    Article  PubMed  CAS  Google Scholar 

  • Aydınoğlu T, Sargın S (2013) Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate. Bioprocess Biosyst Eng 36:215–222

    Article  PubMed  CAS  Google Scholar 

  • Bajaj IB, Survase SA, Saudagar PS, Singhal RS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45:341–354

    CAS  Google Scholar 

  • Banik RM, Santhiagu A, Upadhyay SN (2007) Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresour Technol 98:792–797

    Article  PubMed  CAS  Google Scholar 

  • Bench SR, Heller P, Frank I, Arciniega M, Shilova IN, Zehr JP (2013) Whole genome comparison of six Crocosphaera watsonii strains with differing phenotypes. J Phycol 49:786–801

    Article  PubMed  PubMed Central  Google Scholar 

  • Briczinski EP, Roberts RF (2002) Production of an exopolysaccharide-containing whey, protein concentrate by fermentation of whey. J Dairy Sci 85(12):3189–3197

    Article  PubMed  CAS  Google Scholar 

  • Chen HB, Chen CI, Chen MJ, Lin CC, Kan SC, Zang CZ, Yeh CW, Shieh CJ, Liu YC (2013) The use of mushroom hydrolysate from waste bag-log as the nitrogen source to mycelium biomass and exopolysaccharide production in Pleurotus eryngii cultivation. Journal of the Taiwan Institute of Chemical Engineers 44:163–168

    Article  CAS  Google Scholar 

  • Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44

    Article  PubMed  CAS  Google Scholar 

  • Choudhury AR, Sharma N, Prasad GS (2012) Deoiled jatropha seed cake is a useful nutrient for pullulan production. Microb Cell Factories 11:39

    Article  CAS  Google Scholar 

  • Crognale S, Federici F, Petruccioli M (2003) Beta-Glucan production by Botryosphaeria rhodina on undiluted olive-mill wastewaters. Biotechnol Lett 25:2013–2015

    Article  PubMed  CAS  Google Scholar 

  • Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev 73(1):155–177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962

    Article  CAS  Google Scholar 

  • Doran PM (1995) Bioprocess engineering principles. Elsevier Science & Technology Books, Sydney, pp 333–392

    Chapter  Google Scholar 

  • Fang Y, Ahmed Y, Liu S, Wang Sa LM, Jiao Y (2013) Optimization of antioxidant exopolysaccharides production by Bacillus licheniformis in solid state fermentation. Carbohydr Polym 98:1377–1382

    Article  PubMed  CAS  Google Scholar 

  • Fava F, Totaro G, Diels L, Reis M, Duarte J, Carioca JB, Poggi-Varaldo HM, Ferreira BS (2013) Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnol. http://www.sciencedirect.com/science/article/pii/S1871678413001581#

    Google Scholar 

  • Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T (2014) Regulation of biofilm formation in Pseudomonas and Burkholderia species. J Immunol Environ Microbiol. https://doi.org/10.1111/1462-2920.12448

    Article  Google Scholar 

  • Fialho AM, Martins LO, Donval ML, Leitao JH, Ridout MJ, Jay AJ, Morris VJ, Corria I (1999) Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl Environ Microb 65:2485–2491

    CAS  Google Scholar 

  • Fosmer A, Gibbons W (2011) Separation of scleroglucan and cell biomass from Sclerotium glucanicum grown in an inexpensive, by-product based medium. Int J Agric Biol Eng 4:52–60

    CAS  Google Scholar 

  • Fosmer A, Gibbons WR, Heisel NJ (2010) Reducing the cost of scleroglucan production by use of a condensed corn soluble medium. J Biotechnol Res 2:131–143

    CAS  Google Scholar 

  • Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398

    Article  PubMed  CAS  Google Scholar 

  • Gaona G, Nunez C, Goldberg JB, Linford AS, Najera R, Castaneda M, Guzman J, Espin G, Soberon-Chavez G (2004) Characterization of the Azotobacter vinelandii algC gene involved in alginate and lipopolysaccharide production. FEMS Microbiol Lett 238:199–206

    PubMed  CAS  Google Scholar 

  • Garg N, Manchanda G, Kumar A (2014) Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 105(2):289–305

    Article  PubMed  Google Scholar 

  • Göksungur Y, Uçan A, Güvenç U (2004) Production of pullulan from beet molasses and synthetic medium by Aureobasidium pullulans. Turk J Biol 28:23–30

    Google Scholar 

  • Gunasekar V, Reshma KR, Treesa G, Gowdhaman D, Ponnusami V (2014) Xanthan from sulphuric acid treated tapioca pulp: influence of acid concentration on xanthan fermentation. Carbohydr Polym 102:669–673

    Article  PubMed  CAS  Google Scholar 

  • Han YW, Watson MA (1992) Production of microbial levan from sucrose, sugarcane juice and beet molasses. J Ind Microbiol 9:257–260

    Article  CAS  Google Scholar 

  • Hay ID, Gatland K, Campisano A, Jordens JZ, Rehm BHA (2009) Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain. Appl Environ Microbiol 75:6022–6025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hay ID, Ur Rehman Z, Ghafoor A, Rehm BHA (2010) Bacterial biosynthesis of alginates. J Chem Technol Biotechnol 85:752–759

    Article  CAS  Google Scholar 

  • Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BHA (2014) Genetics and regulation of bacterial alginate production. Environ Microbiol. https://doi.org/10.1111/1462-2920.12389

    Article  PubMed  Google Scholar 

  • Hidalgo-Cantabrana C, Sánchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P (2013) Exopolysaccharide biosynthesis in Bifidobacterium spp.: biological functions and a genomic overview. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02977-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Hungund B, Prabhu S, Shetty C, Acharya S, Prabhu V, Gupta SG (2013) Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J Microb Biochem Technol 5:2

    Google Scholar 

  • Isikhuemhen OS, Mikiashvili NA, Adenipekun CO, Ohimain EI, Shahbazi G (2012) The tropical white rot fungus, Lentinus squarrosulus Mont.: lignocellulolytic enzymes activities and sugar release from cornstalks under solid state fermentation. World J Microbiol Biotechnol 28:1961–1966

    Article  PubMed  CAS  Google Scholar 

  • Israilides CJ, Smith A, Harthill JE, Barnett C, Bambalov G, Scanlon B (1998) Pullulan content of the ethanol precipitate from fermented agro-industrial wastes. Appl Microbiol Biotechnol 49:613–617

    Article  CAS  Google Scholar 

  • Jin H, Lee NK, Shin MK, Kim SK, Kaplan DL, Lee JW (2003) Production of gellan gum by Sphingomonas paucimobilis NK2000 with soybean pomace. Biochem Eng J 16:357–360

    Article  CAS  Google Scholar 

  • Jones SE, Paynich ML, Kearns DB, Knight KL (2014) Protection from intestinal inflammation by bacterial exopolysaccharides. J Immunol 198:4813–4820

    Article  PubMed  CAS  Google Scholar 

  • Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M, Kyriakidis DA, Skaracis GN (2003) Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem 39:249–256

    Article  CAS  Google Scholar 

  • Kang SA, Jang K-H, Seo J-W, Kim KH, Kim YH, Rairakhwada D, Seo MY, Lee JO, Ha SD, Kim C-H, Rhee S-K (2009) Levan: applications and perspectives. In: Rehm BHA (ed) Microbial production of biopolymers and polymer precursors. Academic, Caister

    Google Scholar 

  • Kaur S, Dhillon GS, Sarma SJ, Brar SK, Misra K, Oberoi HS (2014) Waste biomass: a prospective renewable resource for development of bio-based economy/processes. In: Brar et al. (eds) Biotransformation of waste biomass into high value biochemicals. Springer New York Heidelberg Dordrecht, London, pp 3–28

    Google Scholar 

  • Kenyon WJ, Buller CS (2002) Structural analysis of the curdlan-like exopolysaccharide produced by Cellulomonas flavigena KU. J Ind Microbiol Biotechnol 29:200–203

    Article  CAS  Google Scholar 

  • Kreyenschulte D, Krull R, Margaritis A (2014) Recent advances in microbial biopolymer production and purification. Crit Rev Biotechnol 34(1):1–15. https://doi.org/10.3109/07388551.2012.743501

    Article  PubMed  CAS  Google Scholar 

  • Küçükaşık F, Kazak H, Güney D, Finore I, PoliA YO, Nicolaus B, Toksoy Öner E (2011) Molasses as fermentation substrate for levan production by Halomonas sp. Appl Microbiol Biotechnol 89:1729–1740

    Article  PubMed  CAS  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides – a perception. J Basic Microbiol 47:103–117

    Article  PubMed  CAS  Google Scholar 

  • Kurbanoglu EB, Kurbanoglu NI (2007) Ram horn hydrolysate as enhancer of xanthan production in batch culture of Xanthomonas campestris EBK-4 isolate. Process Biochem 42:1146–1149

    Article  CAS  Google Scholar 

  • Lazaridou A, Biliaderis CG, Roukas T, Izydorczyk M (2002) Production and characterization of pullulan from beet molasses using a nonpigmented strain of Aureobasidium pullulans in batch culture. Appl Biochem Biotechnol 97:1–22

    Article  PubMed  CAS  Google Scholar 

  • Leathers TD, Gupta SC (1994) Production of pullulan from fuel ethanol by-products by Aureobasidium sp. strain NRRLY-12974. Biotechnol Lett 16:1163–1166

    Article  CAS  Google Scholar 

  • Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119

    Article  PubMed  CAS  Google Scholar 

  • Lopez MJ, Ramos-Cormenzana A (1996) Xanthan production from olive mill wastewaters. Int Biodeter Biodegr 59:263–270

    Article  Google Scholar 

  • Lopez MJ, Moreno J, Ramos-Cormenzana A (2001a) The effect of olive mill wastewaters variability on xanthan production. J Appl Microbiol 90:829–835

    Article  PubMed  CAS  Google Scholar 

  • Lopez MJ, Moreno J, Ramos-Cormenzana A (2001b) Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Water Res 35:1828–1830

    Article  PubMed  CAS  Google Scholar 

  • Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev. https://doi.org/10.1111/j.1574-6976.2011.00322.x

    Article  PubMed  Google Scholar 

  • Mantzavinos D, Kalogerakis N (2005) Treatment of olive mill effluents: part I. Organic matter degradation by chemical and biological processes – an overview. Environ Int 31:289–295

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M (1990) Curdlan, a (1-3)-beta-D-glucan from Alcaligenes faecalis var. myxogenes IFO13140, activates the alternative complement pathway by heat treatment. Immunol Lett 26:95–97

    Article  PubMed  CAS  Google Scholar 

  • Mikiashvili NA, Isikhuemhen OS, Ohimain EI (2011) Lignin degradation, ligninolytic enzymes activities and exopolysaccharide production by Grifola frondosa strains cultivated on oak sawdust. Braz J Microbiol 42:1101–1108

    Article  CAS  Google Scholar 

  • Mitchell DA, Krieger N (2006) In: Beravic M (ed) Solid-state fermentation bioreactors. Springer, Berlin, pp 1–2

    Chapter  Google Scholar 

  • Morillo JA, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sanchez M (2006) Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Curr Mıcrobiol 53:189–193

    Article  PubMed  CAS  Google Scholar 

  • Morillo JA, Antizar-Ladislao B, Monteoliva-Sánchez M, Ramos-Cormenzana A, Russell NJ (2009) Bioremediation and biovalorisation of olive-mill wastes. Appl Microbiol Biotechnol 82:25–39

    Article  PubMed  CAS  Google Scholar 

  • Moussa TAA, Khalil NM (2012) Solid-state fermentation for the production of dextran from Saccharomyces cerevisiae and its cytotoxic effects. Life Sci J 9(4):2210–2218

    Google Scholar 

  • Muhammadi, Afzal M (2014) Optimization of water absorbing exopolysaccharide production on local cheap substrates by Bacillus strain CMG1403 using one variable at a time approach. J Microbiol 52(1):44–52

    Article  CAS  PubMed  Google Scholar 

  • Nasab MM, Yousefi A (2011) Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J Biotechnol 9(2):94–101

    Google Scholar 

  • Nasab MM, Shekarıpour F, Alıpoor M (2009) Use of date syrup as agricultural waste for xanthan production by Xanthomonas campestris. Iran Agric Res 28(1):89–98

    Google Scholar 

  • Nasab MM, Gavahian M, Yousefi AR, Askari H (2010a) Fermentative production of dextran using food industry wastes. World Acad Sci, Eng Technol 4:1017–1019

    Google Scholar 

  • Nasab MM, Pashangeh S, Rafsanjani M (2010b) Effect of fermentation time on xanthan gum production from sugar beet molasses. World Acad Sci Eng Technol 4:1020–1023

    Google Scholar 

  • Nicolaus B, Kambourova M, Toksoy Öner E (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158

    Article  PubMed  CAS  Google Scholar 

  • Oliveira MR, da Silva RSSF, Buzato JB, Celligoi MAPC (2007) Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochem Eng J 37:177–183

    Article  CAS  Google Scholar 

  • Özcan E, Sargin S, Goksungur Y (2014) Comparison of pullulan production performances of air-lift and bubble column bioreactors and optimization of process parameters in air-lift bioreactor. Biochemical Engineering Journal (In Press)

    Article  CAS  Google Scholar 

  • Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12

    Article  CAS  Google Scholar 

  • Poli A, Donato PD, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea, Hindawi Publishing Corporation, Article ID 693253, 13 p

    Google Scholar 

  • Pollock TJ (1993) Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 139:1939–1945

    Article  CAS  Google Scholar 

  • Purama RK, Goswami P, Khan AT, Goyal A (2009) Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr Polym 76:30–35

    Article  CAS  Google Scholar 

  • Rabha B, Nadra RS, Ahmed B (2012) Effect of some fermentation substrates and growth temperature on exopolysaccharide production by Streptococcus thermophilus BN1. Int J Biosci Biochem Bioinformat 2(1):44–47

    Google Scholar 

  • Ramos-Cormenzana A, Monteoliva-Sánchez M, López MJ (1995) Bioremediation of alpechin. Int Biodeter Biodegr 35:249–268

    Article  CAS  Google Scholar 

  • Razack SA, Velayutham V, Thangavelu V (2013) Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turk J Biol 37:280–288

    Google Scholar 

  • Rehm BHA (2005) Biosynthesis and applications of alginates. In: Wnek G, Bowlin G (eds) Encyclopedia of biomaterials and biomedical engineering. Dekker, New York, pp 1–9

    Google Scholar 

  • Rehm BHA (ed) (2009) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press, Norfolk

    Google Scholar 

  • Riedel T, Spring S, Fiebig A, Petersen J, Kyrpides NC, Göker M, Klenk HP (2014) Genome sequence of the exopolysaccharide-producing Salipiger mucosus type strain (DSM 16094T), a moderately halophilic member of the Roseobacter clade. Stand Genomic Sci 9:3. https://doi.org/10.4056/sigs.4909790

    Article  Google Scholar 

  • Roseiro JC, Costa DC, Collaco MTA (1992) Batch and fed-cultivation of Xanthomonas campestris in carob extracts. Food Sci Technol-Lebensm-Wiss Technol 25:289–293

    CAS  Google Scholar 

  • Roukas T (1998) Pretreatment of beet molasses to increase pullulan production. Process Biochem 33:805–810

    Article  CAS  Google Scholar 

  • Roukas T, Biliaderis CG (1995) Evaluation of carob pod as a substrate for pullulan production by Aureobasidium pullulans. Appl Biochem Biotechnol 55:27–44

    Article  CAS  Google Scholar 

  • Roy Chowdhury S, Basak RK, Sen R, Adhikari B (2012) Utilization of lignocellulosic natural fiber (jute) components during a microbial polymer production. Mater Lett 66:216–218

    Article  CAS  Google Scholar 

  • Santos M, Rodrigues A, Teixeira JA (2005) Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f). Biochem Eng J 25:1–6

    Article  CAS  Google Scholar 

  • Sarwat F, Ul Qader SA, Aman A, Ahmed N (2008) Production and characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci 4:379–386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmid J, Meyer V, Meyer V (2011) Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91:937–947

    Article  PubMed  CAS  Google Scholar 

  • Seesuriyachan P, Techapun C, Shinkawa H, Sasaki K (2010) Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugarcane juice as renewable wastes. Biosci Biotechnol Biochem 74:423–426

    Article  PubMed  CAS  Google Scholar 

  • Seesuriyachan P, Kuntiya A, Hanmoungjai P, Techapun C (2011) Exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: the effect of peptone, yeast extract and beef extract. Songklanakarin J Sci Technol 33(4):379–387

    CAS  Google Scholar 

  • Seo HP, Son CW, Chung CH, Jung DI, Kim SK, Gross RA, Kaplan DL, Lee JW (2004) Production of high molecular weight pullulan by Aureobasidium pullulans HP-2001 with soybean pomace as a nitrogen source. Bioresour Technol 95:293–299

    Article  PubMed  CAS  Google Scholar 

  • Seviour RJ, McNeil B, Fazenda ML, Harvey LM (2011) Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 31(2):170–185

    Article  PubMed  CAS  Google Scholar 

  • Shalini R, Gupta DK (2010) Utilization of pomace from apple processing industries: a review. J Food Sci Technol 47(4):365–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma N, Prasad GS, Choudhury AR (2013) Utilization of corn steep liquor for biosynthesis of pullulan, an important exopolysaccharide. Carbohydr Polym 93:95–101

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui NN, Aman A, Silipo A, Ul Qader SA, Molinaro A (2014) Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydr Polym 99:331–338

    Article  PubMed  CAS  Google Scholar 

  • Silbir S, Dagbagli S, Yegin S, Baysal T, Goksungur Y (2014) Levan production by Zymomonas mobilis in batch and continuousfermentation systems. Carbohydrate Polymers 99:454–461

    Article  PubMed  CAS  Google Scholar 

  • Silva MF, Fornari RCG, Mazutti MA, Oliveira D, Padilha FF, Cichoski AJ, Cansian RL, Luccio MD, Treichel H (2009) Production and characterization of xanthan gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng 90:119–123

    Article  CAS  Google Scholar 

  • Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531

    Article  PubMed  CAS  Google Scholar 

  • Sirajunnisa A, Vijayagopal V, Viruthagiri T (2012) Effect of synthetic carbon substrates and cane molasses, an agro waste, on exopolysaccharide production by P. fluorescens. Int J Sci Eng Appl 1(1)

    Google Scholar 

  • Smith RL, West TP, Gibbons WR (2008) Rhodospirillum rubrum: utilization of condensed corn solubles for poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) production. J Appl Microbiol 104:1488–1494

    Article  PubMed  CAS  Google Scholar 

  • Söğütçü E, Akyıldız SM, Toksoy Öner E (2011) Exopolysaccharide production from waste sugar beet pulp by Halomonas sp. In: The 3rd international conference on biodegradable and biobased polymers (BIOPOL-2011), Strasbourg, 29–31 Aug 2011

    Google Scholar 

  • Stredansky M, Conti E (1999) Xanthan production by solid state fermentation. Process Biochem 34:581–587

    Article  CAS  Google Scholar 

  • Survase SA, Saudagar PS, Singhal RS (2007) Use of complex media for the production of scleroglucan by Sclerotium rolfsii MTCC 2156. Bioresour Technol 98:1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (1982) Biosynthesis of microbial exopolysaccharides. Adv Microb Physiol 23:79–150

    Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    Article  PubMed  CAS  Google Scholar 

  • Sutherland IW (2007) Bacterial exopolysaccharides. In: Kamerling JP (ed) Comprehensive glycoscience. Elsevier, Amsterdam

    Google Scholar 

  • Taşkın M, Erdal S, Canlı O (2010) Utilization of waste loquat (Eriobotrya japonica) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii. Food Sci Biotechnol 19:1069–1075

    Article  CAS  Google Scholar 

  • Taşkın M, Erdal S, Genisel M (2011) Biomass and exopolysaccharide production by Morchella esculenta in submerged culture using the extract from waste loquat (Eriobotrya japonica L.) kernels. J Food Process Preserv 35:623–630

    Article  CAS  Google Scholar 

  • Taşkın M, Ozkan B, Atici O, Aydogan MN (2012) Utilization of chicken feather hydrolysate as a novel fermentation substrate for production of exopolysaccharide and mycelial biomass from edible mushroom Morchella esculenta. Int J Food Sci Nutr 63(5):597–602

    Article  PubMed  CAS  Google Scholar 

  • Taylor CM, Roberts IS (2005) Capsular polysaccharides and their role in virulence. In: Russell W, Herwald H (eds) Concepts in bacterial virulence, vol Contributions to microbiology. Karger, Basel

    Google Scholar 

  • Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161

    Article  CAS  Google Scholar 

  • Toksoy Öner E (2013) Microbial production of extracellular polysaccharides from biomass. In: Feng Z (ed) Pretreatment techniques for biofuels and biorefineries. Springer, New York, pp 35–56

    Chapter  Google Scholar 

  • Turhan I, Bialka KL, Demirci A, Karhan M (2010) Enhanced lactic acid production from carob extract by Lactobacillus casei using invertase pretreatment. Food Biotechnol 24:364–374

    Article  CAS  Google Scholar 

  • van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70(1):157–176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vedyashkina TA, Revin VV, Gogotov IN (2005) Optimizing the conditions of dextran synthesis by the bacterium Leuconostoc mesenteroides grown in a molasses-containing medium. Appl Biochem Microbiol 41:361–364

    Article  CAS  Google Scholar 

  • Vidhyalakshmi R, Vallinachiyar C, Radhika R (2012) Production of xanthan from agro-industrial waste. J Adv Sci Res 3(2):56–59

    Google Scholar 

  • Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Pühler A (2008) The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 134:33–45

    Article  PubMed  CAS  Google Scholar 

  • West TP, Nemmers B (2008) Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct. J Basic Microbiol 48:65–68

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Harcum SW (1999) Xanthan gum production from waste sugar beet pulp. Bioresour Technol 70:105–109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by TUBITAK through project 111M232 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Özcan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Özcan, E., Öner, E.T. (2018). Microbial of Extracellular Polysaccharide Production from Biomass Sources. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6_51-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03751-6_51-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03751-6

  • Online ISBN: 978-3-319-03751-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Microbial of Extracellular Polysaccharide Production from Biomass Sources
    Published:
    21 May 2018

    DOI: https://doi.org/10.1007/978-3-319-03751-6_51-2

  2. Original

    Microbial of Extracellular Polysaccharide Production from Biomass Sources
    Published:
    28 August 2014

    DOI: https://doi.org/10.1007/978-3-319-03751-6_51-1