Skip to main content

Kinematics

  • Chapter
  • First Online:

Abstract

Kinematics is the study of motion. This text addresses the kinematics of an idealized material called a continuum, also referred to as a body.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Lagrangian formulations were studied before Lagrange by Euler, and Eulerian formulations were used before Euler by D’Alembert (private communication with Prof. K.R. Rajagopal, 2011). The incorrect attribution of an idea to one person, which actually belongs to another, pervades our literature and is made rampant by authors propagating these inconsistencies without taking the time to actually read the literature for themselves (Rajagopal 2011b). Throughout this text the author takes exception, from time to time, to commonly held terminologies whenever such inconsistencies, in his mind, seem to exist. This author is by no means a historian, just a person who has a passion for the history of his beloved science, but whose thirst is throttled back by his dyslexia.

  2. 2.

    In the literature, e.g., Sacks (2000) and Freed et al. (2010), γ 1 λ 2 is commonly written as κ 1 and γ 2 λ 1 is written as κ 2. Choosing the description that we did here means that γ 1 and γ 2 retain their physical interpretation of being “magnitudes of shear” that is otherwise lost with the choice of κ 1 and κ 2, which embed λ 2 and λ 1 within them. Mathematically, nothing is wrong with choosing κ 1 and κ 2. It is in their physical interpretation that confusion can arise.

Bibliography

  • Aaron, B. B., & Gosline, J. M. (1981). Elastin as a random-network elastomer: A mechanical and optical analysis of single elastin fibers. Biopolymers, 20, 1247–1260.

    Google Scholar 

  • Abramowitz, M., & Stegun, I. A. (Eds.). (1964). Handbook of mathematical functions: With formulas, graphs, and mathematical tables. Washington, DC: National Bureau of Standards. Republished by New York, NY: Dover Publications.

    Google Scholar 

  • Almansi, E. (1911). Sulle deformazioni finite dei solidi elastici isotropi. Rendiconti della Reale Accademia dei Lincei: Classe di scienze fisiche, matematiche e naturali (Vol. 20, pp. 705–714). Roma: L’Accademia.

    Google Scholar 

  • Atluri, S. N., & Cazzani, A. (1995). Rotations in computational solid mechanics. Archives of Computational Methods in Engineering, 2, 49–138.

    MathSciNet  Google Scholar 

  • Bagley, R. L. (1987). Power law and fractional calculus model of viscoelasticity. AIAA Journal, 27(10), 1412–1417.

    Google Scholar 

  • Bagley, R. L. (1991). The thermorheologically complex material. International Journal of Engineering Science, 29, 797–806.

    MATH  Google Scholar 

  • Bagley, R. L., & Torvik, P. J. (1983). A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27, 201–210.

    MATH  Google Scholar 

  • Baleanu, D., Diethelm, K., Scalas, E., & Trujillo, J. J. (2012). Fractional calculus models and numerical methods. Series on complexity, nonlinearity and chaos (Vol. 3). Singapore: World Scientific.

    Google Scholar 

  • Bell, J. F. (1983). Continuum plasticity at finite strain for stress paths of arbitrary composition and direction. Archive for Rational Mechanics and Analysis, 84, 139–170.

    MATH  Google Scholar 

  • Belytschko, T., Liu, W. K., & Moran, B. (2000). Nonlinear finite elements for continua and structures. Chichester: Wiley.

    MATH  Google Scholar 

  • Bernstein, B. (1960). Hypo-elasticity and elasticity. Archive for Rational Mechanics and Analysis, 6, 90–104.

    Google Scholar 

  • Bernstein, B., & Rajagopal, K. R. (2008). Thermodynamics of hypoelasticity. Zeitschrift für angewandte Mathematik und Physik, 59, 537–553.

    MATH  MathSciNet  Google Scholar 

  • Bernstein, B., & Shokooh, A. (1980). The stress clock function in viscoelasticity. Journal of Rheology, 24, 189–211.

    MATH  MathSciNet  Google Scholar 

  • Bernstein, B., Kearsley, E. A., & Zapas, L. J. (1963). A study of stress relaxation with finite strain. Transactions of the Society of Rheology, 7, 391–410.

    MATH  Google Scholar 

  • Bernstein, B., Kearsley, E. A., & Zapas, L. J. (1964). Thermodynamics of perfect elastic fluids. Journal of Research of the National Bureau of Standards–B. Mathematics and Mathematical Physics, 68B, 103–113.

    Google Scholar 

  • Biot, M. A. (1939). Non-linear theory of elasticity and the linearized case for a body under initial stress. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 27, 468–489.

    Google Scholar 

  • Bird, R. B., Armstrong, R. C., & Hassager, O. (1987a). Dynamics of polymeric liquids: Fluid mechanics (2nd ed., Vol. 1). New York: Wiley.

    Google Scholar 

  • Bird, R. B., Curtiss, C. F., Armstrong, R. C., & Hassager, O. (1987b). Dynamics of polymeric liquids: Kinetic theory (2nd ed., Vol. 2). New York: Wiley.

    Google Scholar 

  • Blatz, P. J., Chu, B. M., & Wayland, H. (1969). On the mechanical behavior of elastic animal tissue. Transactions of the Society of Rheology, 13(1), 83–102.

    Google Scholar 

  • Boltzmann, L. (1874). Zur Theorie der elastischen Nachwirkung. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, Wien, 70(2), pp. 275–300).

    Google Scholar 

  • Bonet, J., & Wood, R. D. (1997). Nonlinear continuum mechanics for finite element analysis. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Bowen, R. M. (1989). Introduction to continuum mechanics for engineers. Mathematical concepts and methods in science and engineering (Vol. 39). New York: Plenum Press. (Republished by Mineola, NY: Dover Publications, revised, 2007, 2009)

    Google Scholar 

  • Braß, H. (1977). Quadraturverfahren. Studia mathematica (Vol. 3). Göttingen: Vandenhoeck & Ruprecht.

    Google Scholar 

  • Bridgman, P. W. (1923). The compressibility of thirty metals as a function of pressure and temperature. Proceedings of the American Academy of Arts and Sciences, 58, 165–242.

    Google Scholar 

  • Brunner, H. (2004). Collocation methods for Volterra integral and related functional equations. Cambridge monographs on applied and computational mathematics (Vol. 15). Cambridge: Cambridge University Press.

    Google Scholar 

  • Butcher, J. C. (2008). Numerical methods for ordinary differential equations (2nd ed.). Chichester: Wiley.

    MATH  Google Scholar 

  • Butcher, J. C., & Podhaisky, H. (2006). On error estimation in general linear methods for stiff ODEs. Applied Numerical Mathematics, 56, 345–357.

    MATH  MathSciNet  Google Scholar 

  • Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539.

    Google Scholar 

  • Caputo, M., & Mainardi, F. (1971b) A new dissipation model based on memory mechanism. Pure and Applied Geophysics, 91, 134–147.

    Google Scholar 

  • Caputo, M., & Mainardi, F. (1971a). Linear models of dissipation in anelastic solids. Rivista del Nuovo Cimento, 1, 161–198.

    Google Scholar 

  • Carton, R. W., Dainauskas, J., & Clark, J. W. (1962). Elastic properties of single elastic fibers. Journal of Applied Physiology, 17(3), 547–551.

    Google Scholar 

  • Catsiff, E., & Tobolsky, A. V. (1955). Stress-relaxation of polyisobutylene in the transition region (1,2). Journal of Colloid and Interface Science, 10, 375–392.

    Google Scholar 

  • Cauchy, A. -L. (1827) Exercices de mathématiques (Vol. 2). Paris: de Bure Frères.

    Google Scholar 

  • Chadwick, P. (1976), Continuum Mechanics: Concise theory and problems. London: George Allen & Unwin. (Republished by Mineola, NY: Dover Publications, 2nd ed., 1999)

    Google Scholar 

  • Cheng, H., & Gupta, K. C. (1989). An historical note on finite rotations. Journal of Applied Mechanics, 56, 139–145.

    MathSciNet  Google Scholar 

  • Christensen, R. M. (1971). Theory of viscoelasticity: An introduction. New York: Academic.

    Google Scholar 

  • Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics: I. Alternating current characteristics. Journal of Chemical Physics, 9, 341–351.

    Google Scholar 

  • Cole, K. S., & Cole, R. H. (1942). Dispersion and absorption in dielectrics: II. Direct current characteristics. Journal of Chemical Physics, 10, 98–105.

    Google Scholar 

  • Coleman, B. D., & Mizel, V. J. (1968). On the general theory of fading memory. Archive for Rational Mechanics and Analysis, 29, 18–31.

    MATH  MathSciNet  Google Scholar 

  • Coleman, B. D., & Noll, W. (1961). Foundations of linear viscoelasticity. Reviews of Modern Physics, 33(2), 239–249.

    MATH  MathSciNet  Google Scholar 

  • Coleman, B. D., & Noll, W. (1964). Simple fluids with fading memory. In M. Reiner & D. Abir (Eds.), Second-order effects in elasticity, plasticity and fluid dynamics (pp. 530–551). New York: Pergamon Press.

    Google Scholar 

  • Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003a). Experimentally tractable, pseudo-elastic constitutive law for biomembranes: I. theory. Journal of Biomechanical Engineering, 125, 94–99.

    Google Scholar 

  • Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003b) Experimentally tractable, pseudo-elastic constitutive law for biomembranes: II application. Journal of Biomechanical Engineering, 125, 100–105.

    Google Scholar 

  • Demiray, H. (1972). A note on the elasticity of soft biological tissues. Journal of Biomechanics, 5, 309–311.

    Google Scholar 

  • Dienes, J. K. (1979). On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica, 32, 217–232.

    MATH  MathSciNet  Google Scholar 

  • Dienes, J. K. (2003). Finite deformation of materials with an ensemble of defects. Technical report LA–13994–MS. Los Alamos: Los Alamos National Laboratory.

    Google Scholar 

  • Diethelm, K. (2010). The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Lecture notes in mathematics (Vol. 2004). Heidelberg: Springer.

    Google Scholar 

  • Diethelm, K., & Freed, A. D. (2006). An efficient algorithm for the evaluation of convolution integrals. Computers and Mathematics with Applications, 51, 51–72.

    MATH  MathSciNet  Google Scholar 

  • Diethelm, K., Ford, N. J., Freed, A. D., & Luchko, Y. (2005). Algorithms for the fractional calculus: A selection of numerical methods. Computer Methods in Applied Mechanics and Engineering, 194, 743–773.

    MATH  MathSciNet  Google Scholar 

  • Doehring, T. C., Freed, A. D., Carew, E. O., & Vesely, I. (2005). Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. Journal of Biomechanical Engineering, 127, 700–708.

    Google Scholar 

  • Dokos, S., LeGrice, I. J., Smaill, B. H., Kar, J., & Young, A. A. (2000). A triaxial-measurement shear-test device for soft biological tissues. Journal of Biomechanical Engineering, 122, 471–478.

    Google Scholar 

  • Dokos, S., Smaill, B. H., Young, A. A., & LeGrice, I. J. (2002). Shear properties of passive ventricular myocardium. American Journal of Physiology–Heart and Circulatory Physiology, 283, H2650–H2659.

    Google Scholar 

  • Douglas, J. F. (2000). Polymer science applications of path-integration, integral equations, and fractional calculus. In R. Hilfer (Ed.), Applications of fractional calculus in physics (pp. 241–330). Singapore: World Scientific.

    Google Scholar 

  • Drucker, D. C. (1959). A definition of stable inelastic material. Journal of Applied Mechanics, 27, 101–106.

    MathSciNet  Google Scholar 

  • Duenwald, S. E., Vanderby, R., Jr., & Lakes, R. S. (2010). Stress relaxation and recovery in tendon and ligament: Experiment and modeling. Biorheology, 47, 1–14.

    Google Scholar 

  • Einstein, A. (1933). On the method of theoretical physics. New York: Oxford University Press. (The Herbert Spencer lecture delivered at Oxford, 10 June 1933)

    Google Scholar 

  • Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1955). Higher transcendental functions. Bateman manuscript project (Vol. 2). New York: McGraw-Hill.

    Google Scholar 

  • Ericksen, J. L. (1958). Hypo-elastic potentials. Quarterly Journal of Mechanics and Applied Mathematics, 11, 67–72.

    MathSciNet  Google Scholar 

  • Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed.). New York: Wiley.

    Google Scholar 

  • Finger, J. (1894). Über die allgemeinsten beziehungen zwischen endlichen deformationen und den zugehörigen spannungen in aeolotropen und isotropen substanzen. Sitzungsberichte der Akademie der Wissenschaften, Wien, 103, 1073–1100.

    MATH  Google Scholar 

  • Fitzgerald, J. E. (1980). A tensorial Hencky measure of strain and strain rate for finite deformations. Journal of Applied Physics, 51, 5111–5115.

    Google Scholar 

  • Flanagan, D. P., & Taylor, L. M. (1987). An accurate numerical algorithm for stress integration with finite rotations. Computer Methods in Applied Mechanics and Engineering, 62, 305–320.

    MATH  Google Scholar 

  • Ford, N. J., & Simpson, A. C. (2001). The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Algorithms, 26, 333–346.

    MATH  MathSciNet  Google Scholar 

  • Freed, A. D. (1995). Natural strain. Journal of Engineering Materials and Technology, 117, 379–385.

    Google Scholar 

  • Freed, A. D. (2008). Anisotropy in hypoelastic soft-tissue mechanics, I: Theory. Journal of Mechanics of Materials and Structures, 3(5), 911–928.

    MathSciNet  Google Scholar 

  • Freed, A. D. (2009). Anisotropy in hypoelastic soft-tissue mechanics, II: Simple extensional experiments. Journal of Mechanics of Materials and Structures, 4(6), 1005–1025.

    Google Scholar 

  • Freed, A. D. (2010). Hypoelastic soft tissues, part I: Theory. Acta Mechanica, 213, 189–204.

    MATH  Google Scholar 

  • Freed, A. D., & Diethelm, K. (2006). Fractional calculus in biomechanics: A 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad. Biomechanics and Modeling in Mechanobiology, 5, 203–215.

    Google Scholar 

  • Freed, A. D., & Diethelm, K. (2007). Caputo derivatives in viscoelasticity: A non-linear finite-deformation theory for tissue. Fractional Calculus and Applied Analysis, 10(3), 219–248.

    MATH  MathSciNet  Google Scholar 

  • Freed, A. D., & Doehring, T. C. (2005). Elastic model for crimped collagen fibrils. Journal of Biomechanical Engineering, 127, 587–593.

    Google Scholar 

  • Freed, A. D., & Einstein, D. R. (2012). Hypo-elastic model for lung parenchyma. Biomechanics and Modeling in Mechanobiology, 11, 557–573.

    Google Scholar 

  • Freed, A. D., & Einstein, D. R. (2013). An implicit elastic theory for lung parenchyma. International Journal of Engineering Science, 62, 31–47.

    MathSciNet  Google Scholar 

  • Freed, A. D., Einstein, D. R., & Sacks, M. S. (2010). Hypoelastic soft tissues, part II: In-plane biaxial experiments. Acta Mechanica, 213, 205–222.

    MATH  Google Scholar 

  • Freed, A. D., Einstein, D. R., & Vesely, I. (2005). Invariant formulation for dispersed transverse isotropy in aortic heart valves: An efficient means for modeling fiber splay. Biomechanics and Modeling in Mechanobiology, 4, 100–117.

    Google Scholar 

  • Fulchiron, R., Verney, V., Cassagnau, P., Michael, A., Levoir, P., & Aubard, J. (1993). Deconvolution of polymer melt stress relaxation by the Padé-Laplace method. Journal of Rheology, 37, 17–34.

    Google Scholar 

  • Fung, Y. C. (1967). Elasticity of soft tissues in simple elongation. American Journal of Physiology, 28, 1532–1544.

    Google Scholar 

  • Fung, Y. -C. (1971). Stress–strain-history relations of soft tissues in simple elongation. In Y. -C. Fung, N. Perrone, & M. Anliker (Eds.), Biomechanics: Its foundations and objectives, chap. 7 (pp. 181–208). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Fung, Y. -C. (1973). Biorheology of soft tissues. Biorheology, 10, 139–155.

    Google Scholar 

  • Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues (2nd ed.). New York: Springer.

    Google Scholar 

  • Gent, A. N. (1996). A new constitutive relation for rubber. Rubber Chemsitry and Technology, 69, 59–61.

    MathSciNet  Google Scholar 

  • Gittus, J. (1975). Creep, viscoelasticity and creep rupture in solids. New York: Halsted Press.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley.

    MATH  Google Scholar 

  • Goldberg, D. E. (2002). The design of innovation: Lessons learned from and for competent genetic algorithms. Genetic algorithms and evolutionary computation (Vol. 7). Boston: Kluwer.

    Google Scholar 

  • Gorenflo, R., & Rutman, R. (1995). On ultraslow and intermediate processes. In P. Rusev, I. Dimovski, & V. Kiryakova (Eds.) Transform methods and special functions, sofia 1994 (pp. 61–81). Singapore: Science Culture Technology Publishing.

    Google Scholar 

  • Gorenflo, R., Loutchko, I., & Luchko, Y. (2002). Computation of the Mittag-Leffler function E_α, β(z) and its derivatives. Fractional Calculus and Applied Analysis, 5, 491–518. [Erratum: 6, 111–112 (2003)]

    Google Scholar 

  • Graham, A. (1981). Kronecker products and matrix calculus: With applications. Ellis Horwood series in mathematics and its applications. Chichester: Ellis Horwood Limited.

    MATH  Google Scholar 

  • Green, G. (1841). On the propagation of light in crystallized media. Transactions of the Cambridge Philosophical Society, 7, 121–140.

    Google Scholar 

  • Gross, B. (1937). Über die anomalien der festen dielektrika. Zeitschrift für Physik, 107, 217–234.

    Google Scholar 

  • Gross, B. (1938). Zum verlauf des einsatzstromes im anomalen dielektrikum. Zeitschrift für Physik, 108, 598–608.

    Google Scholar 

  • Gross, B. (1947). On creep and relaxation. Journal of Applied Physics, 18, 212–221.

    Google Scholar 

  • Gurtin, M. E. (1981). An introduction to continuum mechanics. Mathematics in science and engineering (Vol. 158). New York: Academic.

    Google Scholar 

  • Gurtin, M. E., Fried, E., & Anand, L. (2010). The mechanics and thermodynamics of continua. Cambridge: Cambridge University Press.

    Google Scholar 

  • Guth, E., Wack, P. E., & Anthony, R. L. (1946). Significance of the equation of state for rubber. Journal of Applied Physics, 17, 347–351.

    Google Scholar 

  • Hart, J. F., Cheney, E. W., Lawson, C. L., Maehly, H. J., Mesztenyi, C. K., Rice, J. R., et al. (1968). Computer approximations. The SIAM series in applied mathematics. New York: Wiley.

    MATH  Google Scholar 

  • Havner, K. S. (1992). Finite plastic deformation of crystalline solids. Cambridge monographs on mechanics and applied mathematics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Hencky, H. (1928). Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Zeitschrift für technische Physik, 9, 215–220. (Translated from German to English in NASA TT-21602, Washington DC, 1994)

    Google Scholar 

  • Hencky, H. (1931). The law of elasticity for isotropic and quasi-isotropic substances by finite deformations. Journal of Rheology, 2, 169–176.

    Google Scholar 

  • Herrmann, R. (2011). Fractional calculus: An introduction for physicsts. Singapore: World Scientific.

    Google Scholar 

  • Hilfer, R., & Seybold, H. J. (2006). Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integral Transforms and Special Functions, 17, 637–652.

    MATH  MathSciNet  Google Scholar 

  • Hill, R. (1957). On uniqueness and stability in the theory of finite elastic strain. Journal of the Mechanics and Physics of Solids, 5, 229–241.

    MATH  MathSciNet  Google Scholar 

  • Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 6, 236–249.

    MATH  Google Scholar 

  • Hill, R. (1968). On constitutive inequalites for simple materials I. Journal of the Mechanics and Physics of Solids, 16, 229–242.

    MATH  Google Scholar 

  • Hoger, A. (1986). The material time derivative of logarithmic strain. International Journal of Solids and Structures, 22, 1019–1032.

    MATH  MathSciNet  Google Scholar 

  • Holzapfel, G. A. (2000). Nonlinear solid mechanics: A continuum approach for engineering. Chichester: Wiley.

    Google Scholar 

  • Humphrey, J. D. (2002a) Cardiovascular solid mechanics; cells, tissues, and organs. New York: Springer.

    Google Scholar 

  • Humphrey, J. D. (2002b) Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society, London A, 459, 3–46.

    MathSciNet  Google Scholar 

  • Humphrey, J. D. (2008). Biological soft tissues. In W. N. J. Sharpe (Ed.), Springer handbook of experimental solid mechanics (pp. 169–185). New York: Springer.

    Google Scholar 

  • James, H. M., & Guth, E. (1943). Theory of the elastic properties of rubber. The Journal of Chemical Physics, 11, 455–481.

    Google Scholar 

  • James, H. M., & Guth, E. (1944). Theory of the elasticity of rubber. Journal of Applied Physics, 15, 294–303.

    Google Scholar 

  • James, H. M., & Guth, E. (1947). Theory of the increase in rigidity of rubber during cure. The Journal of Chemical Physics, 15, 669–683.

    Google Scholar 

  • Jaumann, G. (1911). Geschlossenes system physikalischer und chemischer differentialgesetze. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften: Mathematisch-naturwissenschaftliche Klasse, 120, 385–530.

    MATH  Google Scholar 

  • Kachanov, L. M. (1971). Foundations of the theory of plasticity. North-Holland series in applied mathematics and mechanics (Vol. 12). Amsterdam: North-Holland Publishing.

    Google Scholar 

  • Kaye, A. (1962). A non-Newtonian flow in incompressible fluids. Technical report 134. Cranfield: The College of Aeronautics.

    Google Scholar 

  • Kirchhoff, G. (1852). Über die Gleichungen des Gleichgewichtes eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzungsberichte der Akademie der Wissenschaften, Wien, 9, 763–773.

    Google Scholar 

  • Kohlrausch, R. (1847). Ueber das Dellmann’sche Elektrometer. Annalen der Physik und Chemie, 72(11), 353–405.

    Google Scholar 

  • Lai, W. M., Rubin, D., & Krempl, E. (1974). Introduction to continuum mechanics. Pergamon Unified Engineering Series. New York: Pergamon Press.

    MATH  Google Scholar 

  • Lakes, R. S. (1998). Viscoelastic solids. CRC Mechanical Engineering Series. Boca Raton: CRC Press.

    Google Scholar 

  • Leonov, A. I. (1996). On the constitutive equations for nonisothermal bulk relaxation. Macromolecules, 29, 8383–8386.

    Google Scholar 

  • Leonov, A. (2000). On the conditions of potentiality in finite elasticity and hypo-elasticity. International Journal of Solids and Structures, 37, 2565–2576.

    MATH  MathSciNet  Google Scholar 

  • Lillie, M. A., & Gosline, J. M. (1996). Swelling and viscoelastic properties of osmotically stressed elastin. Biopolymers, 39, 641–652.

    Google Scholar 

  • Linke, W. A., & Grützner, A. (2008). Pulling single molecules of titin by AFM—recent advances and physiological implications. Pflügers Archiv – European Journal of Physiology, 456, 101–115.

    Google Scholar 

  • Lodge, A. S. (1956). A network theory of flow birefringence and stress in concentrated polymer solutions. Transactions of the Faraday Society, 52, 120–130.

    Google Scholar 

  • Lodge, A. S. (1958). A network theory of constrained elastic recovery in concentrated polymer solutions. Rheologica Acta, 1, 158–163.

    Google Scholar 

  • Lodge, A. S. (1964). Elastic liquids: An introductory vector treatment of finite-strain polymer rheology. London: Academic.

    Google Scholar 

  • Lodge, A. S. (1974). Body tensor fields in continuum mechanics: With applications to polymer rheology. New York: Academic.

    Google Scholar 

  • Lodge, A. S. (1984). A classification of constitutive equations based on stress relaxation predictions for the single-jump shear strain experiment. Journal of Non-Newtonian Fluid Mechanics, 14, 67–83.

    MATH  Google Scholar 

  • Lodge, A. S. (1999). An introduction to elastomer molecular network theory. Madison: Bannatek Press.

    Google Scholar 

  • Lodge, A. S., McLeod, J. B., & Nohel, J. A. (1978). A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology. Proceedings of the Royal Society of Edinburgh, 80A, 99–137.

    MathSciNet  Google Scholar 

  • Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press.

    MATH  Google Scholar 

  • Mainardi, F., & Gorenflo, R. (2007). Time-fractional derivatives in relaxation processes: A tutorial survey. Fractional Calculus and Applied Analysis, 10, 269–308.

    MATH  MathSciNet  Google Scholar 

  • Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Prentice-Hall series in engineering of the physical sciences. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Marsden, J. E., & Hughes, T. J. R. (1983). Mathematic foundations of elasticity. Englewood Cliffs: Prentice-Hall. Republished by Mineola, NY: Dover Publications, 1994.

    Google Scholar 

  • Maxwell, J. C. (1867). On the dynamical theory of gases. Philosophical Transactions of the Royal Society, London, 157, 49–88.

    Google Scholar 

  • McLoughlin, J. R., & Tobolsky, A. V. (1952). The viscoelastic behavior of polymethyl methacrylate. Journal of Colloid and Interface Science, 7, 555–568.

    Google Scholar 

  • Meerschaert, M. M., & Sikorskii, A. (2012). Stochastic models for fractional calculus. De Gruyter studies in mathematics (Vol. 43). Berlin: De Gruyter.

    Google Scholar 

  • Metzler, R., & Klafter, J. (2002). From stretched exponential to inverse power-law: Fractional dynamics, Cole-Cole relaxation processes, and beyond. Journal of Non-crystalline Solids, 305, 81–87.

    Google Scholar 

  • Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: John Wiley.

    MATH  Google Scholar 

  • Miller-Young, J. E., Duncan, N. A., & Baroud, G. (2002). Material properties of the human calcaneal fat pad in compression: Experiment and theory. Journal of Biomechanics, 35, 1523–1531.

    Google Scholar 

  • Mittag-Leffler, G. (1904). Sur la représentation analytique d’une branche uniforme d’une fonction monogène. Acta Mathematica, 29, 101–168.

    MathSciNet  Google Scholar 

  • Moon, H., & Truesdell, C. (1974). Interpretations of adscititious inequalities through the effects pure shear stress produces upon an isotropic elastic solid. Archive for Rational Mechanics and Analysis, 55, 1–17.

    MATH  MathSciNet  Google Scholar 

  • Mooney, M. (1940). A theory of large elastic deformations. Journal of Applied Physics, 11, 582–592.

    MATH  Google Scholar 

  • Morgan, F. R. (1960). The mechanical properties of collagen fibres: Stress-strain curves. Journal of the International Society of Leather Trades’ Chemists, 44, 170–182.

    Google Scholar 

  • Moyer, A. E. (1977). Robert Hooke’s ambiguous presentation of “Hooke’s law”. Isis, 68(242), 266–275.

    Google Scholar 

  • Nadeau, J. C., & Ferrari, M. (1998). Invariant tensor-to-matrix mappings for evaluation of tensorial expressions. Journal of Elasticity, 52, 43–61.

    MATH  MathSciNet  Google Scholar 

  • Neubert, H. K. P. (1963). A simple model representing internal damping in solid matrials. The Aeronautical Quarterly, 14, 187–210.

    Google Scholar 

  • Nicholson, D. W. (2008). Finite element analysis: Thermomechanics of solids (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Nicholson, D. W. (2013). An analysis of invariant convexity in hyperelasticity. Submitted to International Journal of Engineering Science.

    Google Scholar 

  • Nicholson, D. W., & Lin, B. (1998). On the tangent modulus tensor in hyperelasticity. ACTA Mechanica, 131, 121–131.

    MATH  MathSciNet  Google Scholar 

  • Nicholson, D. W., & Lin, B. (1999). Extensions of Kronecker product algebra with applications in continuum and computational mechanics. ACTA Mechanica, 136, 223–241.

    MATH  MathSciNet  Google Scholar 

  • Noll, W. (1955). On the continuity of the solid and fluid states. Journal of Rational Mechanics and Analysis, 4, 3–81.

    MATH  MathSciNet  Google Scholar 

  • Noll, W. (1958). A mathematical theory of the mechanical behavior of continuous media. Archive for Rational Mechanics and Analysis, 2, 197–226.

    MATH  Google Scholar 

  • Noll, W. (1972). A new mathematical theory of simple materials. Archive for Rational Mechanics and Analysis, 48, 1–50.

    MATH  MathSciNet  Google Scholar 

  • Nowick, A. S., & Berry, B. S. (1972). Anelastic relaxation in crystalline solids. Materials science series. New York: Academic.

    Google Scholar 

  • Nutting, P. G. (1921). A new general law of deformation. Journal of the Franklin Institute, 191, 679–685.

    Google Scholar 

  • Ogden, R. W. (1972). Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society, London A, 326, 565–584.

    MATH  Google Scholar 

  • Ogden, R. W. (1984). Non-linear elastic deformations. New York: John Wiley. (Republished by Mineola, NY: Dover Publications, 1997)

    Google Scholar 

  • Oldham, K. B., & Spanier, J. (1974). The fractional calculus: Theory and applications of differentiation and integration to arbitrary order. New York: Academic. (Republished by Mineola, NY: Dover Publications, revised, 2006)

    Google Scholar 

  • Oldroyd, J. G. (1950). On the formulation of rheological equations of state. Proceedings of the Royal Society, London A, 200, 523–541.

    MATH  MathSciNet  Google Scholar 

  • Oldroyd, J. G. (1970). Equations of state of continuous matter in general relativity. Proceedings of the Royal Society, London A, 316, 1–28.

    MathSciNet  Google Scholar 

  • Park, S. W., & Schapery, R. A. (1999). Methods of interconversion between linear viscoelastic material functions, part I: A numerical method based on Prony series. International Journal of Solids and Structures, 36, 1653–1675.

    MATH  Google Scholar 

  • Phan-Thien, N. (2002). Understanding viscoelasticity: Basics of rheologoy. Berlin: Springer.

    Google Scholar 

  • Piola, G. (1833). La meccanica dé corpi naturalmente estesi: Trattata col calcolo delle variazioni. Opuscoli Matematici e Fisici di Diversi Autori, 1, 201–236.

    Google Scholar 

  • Pipkin, A. C. (1972). Lectures on viscoelasticity theory. Applied mathematical sciences (Vol. 7). New York: Springer.

    Google Scholar 

  • Pipkin, A. C., & Rogers, T. G. (1968). A non-linear integral representation for viscoelastic behaviour. Journal of the Mechanics and Physics of Solids, 16, 59–72.

    MATH  Google Scholar 

  • Podlubny, I. (1999). Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering (Vol. 198). San Diego: Academic.

    Google Scholar 

  • Polyanin, A. D., & Zaitsev, V. F. (2003). Handbook of exact solutions for ordinary differential equations (2nd ed.). Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipies: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Puso, M. A., & Weiss, J. A. (1998). Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. Journal of Biomechanical Engineering, 120, 62–70.

    Google Scholar 

  • Rajagopal, K. R. (2003). On implicit constitutive theories. Applications of Mathematics, 48(4), 279–319.

    MATH  MathSciNet  Google Scholar 

  • Rajagopal, K. R. (2011a) Conspectus of concepts of elasticity. Mathematics and Mechanics of Solids, 16, 536–562.

    MATH  MathSciNet  Google Scholar 

  • Rajagopal, K. R. (2011b) On the cavalier attitude towards referencing. International Journal of Engineering Science. In press.

    Google Scholar 

  • Rajagopal, K. R., & Srinivasa, A. R. (2007). On the response of non-dissipative solids. Proceedings of the Royal Society, London A, 463, 357–367.

    MATH  MathSciNet  Google Scholar 

  • Rajagopal, K. R., & Srinivasa, A. R. (2009). On a class of non-dissipative materials that are not hyperelastic. Proceedings of the Royal Society, London A, 465, 493–500.

    MATH  MathSciNet  Google Scholar 

  • Rajagopal, K. R., & Wineman, A. (2010). Applications of viscoelastic clock models in biomechanics. Acta Mechanica, 213, 255–266.

    MATH  Google Scholar 

  • Rao, I. J., & Rajagopal, K. R. (2007). The status of the K-BKZ model within the framework of materials with multiple natural configurations. Journal of Non-Newtonian Fluid Mechanics, 141, 79–84.

    MATH  Google Scholar 

  • Rivlin, R. S., & Saunders, D. W. (1951). Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber. Philosophical Transactions of the Royal Society, London, A 243, 251–288.

    Google Scholar 

  • Rivlin, R. S., & Smith, G. F. (1969). Orthogonal integrity basis for N symmetric matrices. In D. Abir (Ed.), Contributions to mechanics (pp. 121–141). New York: Pergamon Press.

    Google Scholar 

  • Rouse, P. E. (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. Journal of Chemical Physics, 21, 1272–1280.

    Google Scholar 

  • Sacks, M. S. (2000). Biaxial mechanical evaluation of planar biological materials. Journal of Elasticity, 61, 199–246.

    MATH  Google Scholar 

  • Sacks, M. S., & Sun, W. (2003). Multiaxial mechanical behavior of biological materials. Annual Review of Biomedical Engineering, 5, 251–284.

    Google Scholar 

  • Samko, S. G., Kilbas, A., & Marichev, O. I. (1993). Fractional integrals and derivatives: Theory and applications. Yverdon: Gordon and Breach.

    MATH  Google Scholar 

  • Schapery, R. A., & Park, S. W. (1999). Methods of interconversion between linear viscoelastic material functions, part II: An approximate analytical method. International Journal of Solids and Structures, 36, 1677–1699.

    MATH  Google Scholar 

  • Scott Blair, G. W. (1944). Analytical and integrative aspects of the stress-strain-time problem. Journal of Scientific Instruments, 21, 80–84.

    Google Scholar 

  • Signorini, A. (1930). Sulle deformazioni thermoelastiche finite. In C. W. Oseen, & W. Weibull (Eds.), Proceedings of the 3rd International Congress for Applied Mechanics (Vol. 2, pp. 80–89). Stockholm: Ab. Sveriges Litografiska Tryckerier.

    Google Scholar 

  • Simhambhatla, M., & Leonov, A. (1993). The extended Padé-Laplace method for efficient discretization of linear viscoelastic spectra. Rheologica Acta, 32, 589–600.

    Google Scholar 

  • Simo, J. C., & Hughes, T. J. R. (1998) Computational inelasticity. Interdisciplinary applied mathematics (Vol. 7). New York: Springer.

    Google Scholar 

  • Smith, J. C., & Stamenović, D. (1986). Surface forces in lungs. I. Alveolar surface tension-lung volume relationships. Journal of Applied Physiology, 60(4), 1341–1350.

    Google Scholar 

  • Sokolnikoff, I. S. (1964). Tensor analysis: Theory and applications to geometry and mechanics of continua (2nd ed.). Applied Mathematics Series. New York: Wiley.

    MATH  Google Scholar 

  • Spencer, A. J. M. (1972). Deformations in fibre-reinforced materials. Oxford science research papers. Oxford: Clarendon Press.

    Google Scholar 

  • Stamenović, D., & Smith, J. C. (1986a). Surface forces in lungs. II. Microstructural mechanics and lung stability. Journal of Applied Physiology, 60(4), 1351–1357.

    Google Scholar 

  • Stamenović, D., & Smith, J. C. (1986b). Surface forces in lungs. III. Alveolar surface tension and elastic properties of lung parenchyma. Journal of Applied Physiology, 60(4), 1358–1362.

    Google Scholar 

  • Stouffer, D. C. & Dame, L. T. (1996). Inelastic deformation of metals: Models, mechanical properties, and metallurgy. New York: Wiley

    Google Scholar 

  • Stuebner, M. & Haider, M. A. (2010). A fast quadrature-based numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage. Journal of Biomechanics, 43, 1835–1839.

    Google Scholar 

  • Thomas, T. Y. (1955). On the structure of the stress-strain relations. Proceedings of the National Academy of Sciences of the United States of America, 41, 716–719.

    MATH  MathSciNet  Google Scholar 

  • Tobolsky, A. V. (1956). Stress relaxation studies of the viscoelastic properties of polymers. Journal of Applied Physics, 27, 673–685.

    Google Scholar 

  • Tobolsky, A. V. (1960). Properties and structure of polymers. New York: Wiley

    Google Scholar 

  • Tobolsky, A. V. & Mercurio, A. (1959). Oxidative degradation of polydiene vulcanizates. Journal of Applied Polymer Science, 2, 186–188.

    Google Scholar 

  • Treloar, L. R. G. (1975). The physics of rubber elasticity (3rd ed.). Oxford: Clarendon Press.

    Google Scholar 

  • Truesdell, C. (1953). The mechanical foundations of elasticity and fluid dynamics. Journal of Rational Mechanics and Analysis, 2, 593–616.

    MATH  MathSciNet  Google Scholar 

  • Truesdell, C. (1955). Hypoelasticity. Journal of Rational Mechanics and Analysis, 4, 83–133.

    MATH  MathSciNet  Google Scholar 

  • Truesdell, C. (1956). Hypo-elastic shear. Journal of Applied Physics, 27, 441–447.

    MathSciNet  Google Scholar 

  • Truesdell, C. (1958). Geometric interpretation for the reciprocal deformation tensors. Quarterly of Applied Mathematics, 15, 434–435.

    MATH  MathSciNet  Google Scholar 

  • Truesdell, C. (1961). Stages in the development of the concept of stress. Problems of continuum mechanics (Muskhelisvili anniversary volume) (pp. 556–564). Philadelphia: Society of Industrial and Applied Mathematics.

    Google Scholar 

  • Truesdell, C. & Noll, W. (2004). The non-linear field theories of mechanics (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Truesdell, C. & Toupin, R. (1960). The classical field theories. In S. Flügge (Ed.), Encyclopedia of physics. Principles of classical mechanics and field theory (Vol. III/1, pp. 226–793). Berlin: Springer.

    Google Scholar 

  • Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. Berlin: Springer.

    MATH  Google Scholar 

  • Veronda, D. R. & Westmann, R. A. (1970) Mechanical characterization of skin: Finite deformations. Journal of Biomechanics, 3, 111–124.

    Google Scholar 

  • Viidik, A. (1973). Functional properties of collagenous tissues. International Review of Connective Tissue Research, 6, 127–215.

    Google Scholar 

  • Vito, R. (1973). A note on arterial elasticity. Journal of Biomechanics, 6, 561–564.

    Google Scholar 

  • Volterra, V. (1930). Theory of functionals and of integral and integro-differential equations. Glasgow: Blackie and Son. Republished by Mineola, NY: Dover Publications.

    Google Scholar 

  • Wang, M. C. & Guth, E. (1952). Statistical theory of networks of non-Gaussian flexible chains. The Journal of Chemical Physics, 20, 1144–1157.

    MathSciNet  Google Scholar 

  • Wang, K., Hu, Y. & He, J. (2012). Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484, 327–332.

    Google Scholar 

  • Wei, J. (1975). Least square fitting of an elephant. Chemtech, 5, 128–129.

    Google Scholar 

  • Weiss, J. A. & Gardiner, J. C. (2001). Computational modeling of ligament mechanics. Critical Reviews in Biomedical Engineering, 29, 303–371.

    Google Scholar 

  • Williams, M. L. (1964). Structural analysis of viscoelastic materials. AIAA Journal, 2(5), 785–808.

    MATH  Google Scholar 

  • Williams, G. & Watts, D. C. (1970). Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Transactions of the Faraday Society, 66, 80–85.

    Google Scholar 

  • Williams, M. L., Landel, R. F. & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77, 3701–3707.

    Google Scholar 

  • Wineman, A. (2009). Nonlinear viscoelastic solids–a review. Mathematics and Mechanics of Solids, 14, 300–366.

    MATH  MathSciNet  Google Scholar 

  • Wineman, A. & Min, J. -H. (2003). Time dependent scission and cross-linking in an elastomeric cylinder undergoing circular shear and heat conduction. International Journal of Non-Linear Mechanics, 38, 969–983.

    MATH  Google Scholar 

  • Wineman, A. S. & Rajagopal, K. R. (2000). Mechanical response of polymers, an introduction. Cambridge: Cambridge University Press.

    Google Scholar 

  • Zaremba, S. (1903). Sur une forme perfectionnée de la théorie de la relaxation. Bulletin de l’Académie de Cracovie, 8, pp. 594–614.

    Google Scholar 

  • Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press.

    Google Scholar 

  • Zhu, W., Lai, W. M. & Mow, V. C. (1991). The density and strength of proteoglycan-proteoglycan interaction sites in concentrated solutions. Journal of Biomechanics, 24, 1007–1018.

    Google Scholar 

  • Zimm, B. H. (1956). Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. Journal of Chemical Physics, 24, 269–278.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freed, A.D. (2014). Kinematics. In: Soft Solids. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-03551-2_1

Download citation

Publish with us

Policies and ethics