Skip to main content

Avalanches in Multiplex and Interdependent Networks

  • Chapter
  • First Online:
Networks of Networks: The Last Frontier of Complexity

Abstract

Many real-world complex systems are represented not by single networks but rather by sets of interdependent networks. In these specific networks, vertices in each network mutually depend on vertices in other networks. In the simplest representative case, interdependent networks are equivalent to the so-called multiplex networks containing vertices of one sort but several kinds of edges. Connectivity properties of these networks and their robustness against damage differ sharply from ordinary networks. Connected components in ordinary networks are naturally generalized to viable clusters in multiplex networks whose vertices are connected by paths passing over each individual sort of their edges. We examine the robustness of the giant viable cluster to random damage. We show that random damage to these systems can lead to the avalanche collapse of the viable cluster, and that this collapse is a hybrid phase transition combining a discontinuity and the critical singularity. For this transition we identify latent critical clusters associated with the avalanches triggered by a removal of single vertices. Divergence of their mean size signals the approach to the hybrid phase transition from one side, while there are no critical precursors on the other side. We find that this discontinuous transition occurs in scale-free multiplex networks whenever the mean degree of at least one of the interdependent networks does not diverge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008)

    Google Scholar 

  2. Dorogovtsev, S.N., Mendes, J., Samukhin, A., Zyuzin, A.: Organization of modular networks. Phys. Rev. E 78, 056106 (2008)

    Google Scholar 

  3. Leicht, E.A., D’Souza, R.M.: Percolation on interacting networks (2009). arXiv:0908.0894

    Google Scholar 

  4. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Google Scholar 

  5. Pocock, M.J.O., Evans, D.M., Memmott, J.: The robustness and restoration of a network of ecological networks. Science 335, 973–976 (2012)

    Google Scholar 

  6. Kurant, M., Thiran, P.: Layered complex networks. Phys. Rev. Lett. 96, 138701 (2006)

    Google Scholar 

  7. Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. Mag. 21, 11–25 (2001)

    Google Scholar 

  8. Dueñas, L., Cragin, J.I., Goodno, B.J.: Seismic response of critical interdependent networks. Earthq. Eng. Struct. Dyn. 36, 285–306 (2007)

    Google Scholar 

  9. Poljans̆ek, K., Bono, F., Gutiérrez, E.: Seismic risk assessment of interdependent critical infrastructure systems: The case of european gas and electricity networks. Earthq. Eng. Struct. Dyn. 41, 61–79 (2012)

    Google Scholar 

  10. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic casdade of failures in interdependent networks. Nature 464, 08932 (2010)

    Google Scholar 

  11. Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011)

    Google Scholar 

  12. Son, S.W., Bizhani, G., Christensen, C., Grassberger, P., Paczuski, M.: Percolation theory on interdependent networks based on epidemic spreading. EPL 97, 16006 (2012)

    Google Scholar 

  13. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Avalanche collapse of interdependent networks. Phys. Rev. Lett. 109, 248701 (2012)

    Google Scholar 

  14. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Bootstrap percolation on complex networks. Phys. Rev. E 82, 011103 (2010)

    Google Scholar 

  15. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: \(k\)-core organisation of complex networks. Phys. Rev. Lett. 96, 040601 (2006)

    Google Scholar 

  16. Eckmann, J.P., Feinerman, O., Gruendlinger, L., Moses, E., Soriano, J., Tlusty, T.: The physics of living neural networks. Phys. Rep. 449, 54–76 (2007)

    Google Scholar 

  17. Dai, L., Vorselen, D., Korolev, K.S., Gore, J.: Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336, 1175–7 (2012)

    Google Scholar 

  18. Klimek, P., Thurner, S., Hanel, R.: Pruning the tree of life: \(k\)-core percolation as selection mechanism. J. Theoret. Biol. 256, 142–146 (2009)

    Google Scholar 

  19. Sellitto, M., Biroli, G., Toninell, C.: Facilitated spin models on bethe lattice: Bootstrap percolation, mode-coupling transition and glassy dynamics. Europhys. Lett. 69(4), 496–502 (2005)

    Google Scholar 

  20. Toninelli, C., Biroli, G., Fisher, D.S.: Jamming percolation and glass transitions in lattice models. Phys. Rev. Lett. 96(3), 035702 (2006)

    Google Scholar 

  21. Sabhapandit, S., Dhar, D., Shukla, P.: Hysteresis in the random-field Ising model and bootstrap percolation. Phys. Rev. Lett. 88, 197202 (2002)

    Google Scholar 

  22. Stauffer, D., Aharony, A.: Introduction to percolation theory, 2nd edn. Taylor and Francis, London (1992)

    Google Scholar 

  23. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: \(k\)-core architecture and \(k\)-core percolation on complex networks. Physica D 224, 7–19 (2006)

    Google Scholar 

  24. Cohen, R., ben Avraham, D., Havlin, S.: Percolation critical exponents in scale-free networks. Phys. Rev. E 66, 036113 (2002)

    Google Scholar 

  25. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance in complex networks. Nature 401, 378–382 (2000)

    Google Scholar 

  26. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by FET IP Project MULTIPLEX 317532 and by the PTDC projects SAU-NEU/103904/2008, FIS/108476/2008, MAT/114515/2009 and PEst-C/CTM/LA0025/2011, and post-doctoral fellowship SFRH/BPD/74040/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Baxter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F. (2014). Avalanches in Multiplex and Interdependent Networks. In: D'Agostino, G., Scala, A. (eds) Networks of Networks: The Last Frontier of Complexity. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-03518-5_2

Download citation

Publish with us

Policies and ethics