Skip to main content

Evaluation of Damages Induced by Ga+-Focused Ion Beam in Piezoelectric Nanostructures

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 20))

Abstract

The impact of Ga+-focused ion beam (FIB) about functional properties of continuous and nanostructured piezoelectric thin films of lead zirconate titanate (Pb(ZrxTi1-x)O3) was investigated. A suitable way to fabricate piezoelectric nanocapacitors was studied, based on the amorphous or crystallized state of the film before etching. Strong modification of structural and electrical behavior for area exposed to ion irradiation is observed when the film is etched in the crystallized state. Both the implantation of Ga+ ions and the film amorphization highlighted by Raman spectroscopy and Kelvin force microscopy analyses can explain this result. The piezoactivity detected by piezoresponse force microscopy is fully destroyed even after a post-annealing treatment. In the case of amorphous etched film, no significant degradation is observed. The latter process is used to successfully fabricate Pb(ZrxTi1-x)O3-based nanocapacitors by means of FIB method. In 50-nm-size capacitors, the local electromechanical behavior is measured at similar level that the one obtained for the un-etched film, evidencing no manifest sidewall effect or FIB-induced damages. This further evidences that amorphous FIB lithography process can reduce the etching damages, demonstrating this is an effective alternative method and very beneficial to pattern such low-dimensional structures, which is a significant result in view of the development of functional nanostructures in the field of nanoelectromechanical systems applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. He, R.R., Feng, X.L., Roukes, M.L., et al.: Self-transducing silicon nanowire electromechanical systems at room temperature. Nano Lett. 8, 1756–1761 (2008)

    Article  Google Scholar 

  2. Bhaskaran, M., Sriram, S., Ruffell, S., et al.: Nanoscale characterization of energy generation from piezoelectric thin films. Adv. Funct. Mater. 21, 2251–2257 (2011)

    Article  Google Scholar 

  3. Wang, Z.L., Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  4. Trolier-McKinstry, S., Muralt, P.: Thin film piezoelectrics for MEMS. J. Electroceram. 12, 7–17 (2004)

    Article  Google Scholar 

  5. Eom, C.B., Trolier-McKinstry, S.: Thin-film piezoelectric MEMS. MRS Bull. 37, 1007–1021 (2012)

    Article  Google Scholar 

  6. Evans, P.R., Zhu, X., Baxter, P., et al.: Toward self-assembled ferroelectric random access memories: hard-wired switching capacitor arrays with almost Tb/in.2 densities. Nano Lett. 7, 1134–1137 (2007)

    Article  Google Scholar 

  7. Xu, S., Hansen, B.J., Wang, Z.L.: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 1, 93 (2010)

    Article  Google Scholar 

  8. Lee, W., Han, H., Lotnyk, A., et al.: Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density. Nat. Nanotechnol. 3, 402–407 (2008)

    Article  Google Scholar 

  9. Ahn, C.H., Rabe, K.M., Triscone, J.M.: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004)

    Article  Google Scholar 

  10. Gruverman, A., Kholkin, A.: Nanoscale ferroelectrics: processing, characterization and future trends. Rep. Prog. Phys. 69, 2443–2474 (2006)

    Article  Google Scholar 

  11. Han, H., Kim, Y., Alexe, M., et al.: Nanostructured ferroelectrics: fabrication and structure-property relations. Adv. Mater. 23, 4599–4613 (2011)

    Article  Google Scholar 

  12. Nagarajan, V., Roytburd, A., Stanishevsky, A., et al.: Dynamics of ferroelastic domains in ferroelectric thin films. Nat. Mater. 2, 43–47 (2003)

    Article  Google Scholar 

  13. Scott, J.F.: Dimensional effects on ferroelectrics: ultra-thin single crystals, nanotubes, nano-rods, and nano-ribbons. Ferroelectr 316, 13–21 (2005)

    Article  Google Scholar 

  14. Morozovska, A.N., Eliseev, E.A., Glinchuk, M.D.: Ferroelectricity enhancement in confined nanorods: direct variational method. Phys. Rev. B 73, 214106 (2006)

    Article  Google Scholar 

  15. Mancha, S.: Chemical etching of thin-film PLZT. Ferroelectr 135, 131–137 (1992)

    Article  Google Scholar 

  16. Kawagughi, T., Adachi, H., Setsune, K., et al.: PLZT thin-film waveguides. Appl. Opt. 23, 2187–2191 (1984)

    Article  Google Scholar 

  17. Legrand, C., Da Costa, A., Desfeux, R., et al.: Piezoelectric evaluation of ion beam etched Pb(Zr, Ti)O3 thin films by piezoresponse force microscopy. Appl. Surf. Sci. 253, 4942–4946 (2007)

    Article  Google Scholar 

  18. Saito, K., Choi, J.H., Fukuda, T., et al.: Reactive ion etching of sputtered PbZr1-xTixO3 thin-films. Jpn. J. Appl. Phys. Pt. 2 31, L1260–L1262 (1992)

    Article  Google Scholar 

  19. Blach-Legrand, C., Saitzek, S., Da Costa, A., et al.: Comparative analysis for the local piezoelectric properties of ion beam and reactive ion beam etched Pb(Zr, Ti)O3 thin films. Integr. Ferroelectr. 98, 230–240 (2008)

    Article  Google Scholar 

  20. Yokoyama, S., Ito, Y., Ishihara, K., et al.: High-temperature etching of PZT/PT/TIN structure by high-density ECR plasma. Jpn. J. Appl. Phys. Pt. 1 34, 767–770 (1995)

    Article  Google Scholar 

  21. Chung, C.W., Kim, C.J.: Etching effects on ferroelectric capacitors with multilayered electrodes. Jpn. J. Appl. Phys. Pt. 1 36, 2747–2753 (1997)

    Article  Google Scholar 

  22. Ganpule, C.S., Stanishevsky, A., Su, Q., et al.: Scaling of ferroelectric properties in thin films. Appl. Phys. Lett. 75, 409–411 (1999)

    Article  Google Scholar 

  23. Ganpule, C.S., Stanishevsky, A., Aggarwal, S., et al.: Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films. Appl. Phys. Lett. 75, 3874–3876 (1999)

    Article  Google Scholar 

  24. Schilling, A., Byrne, D., Catalan, G., et al.: Domains in ferroelectric nanodots. Nano Lett. 9, 3359–3364 (2009)

    Article  Google Scholar 

  25. Liang, R.H., Rémiens, D., Deresmes, D., et al.: Enhancement in nanoscale electrical properties of lead zirconic titanate island fabricated by focused ion beam. J. Appl. Phys. 105, 044101–044107 (2009)

    Article  Google Scholar 

  26. Rémiens, D., Liang, R.H., Soyer, C., et al.: Analysis of the degradation induced by focused ion Ga3+ beam for the realization of piezoelectric nanostructures. J. Appl. Phys. 108:042008–6 (2010).

    Google Scholar 

  27. Roytburd, A.L., Alpay, S.P., Nagarajan, V., et al.: Measurement of internal stresses via the polarization in epitaxial ferroelectric films. Phys. Rev. Lett. 85, 190–193 (2000)

    Article  Google Scholar 

  28. Li, J.H., Chen, L., Nagarajan, V., et al.: Finite element modeling of piezoresponse in nanostructured ferroelectric films. Appl. Phys. Lett. 84, 2626–2628 (2004)

    Article  Google Scholar 

  29. Stanishevsky, A., Nagaraj, B., Melngailis, J., et al.: Radiation damage and its recovery in focused ion beam fabricated ferroelectric capacitors. J. Appl. Phys. 92, 3275–3278 (2002)

    Article  Google Scholar 

  30. Tiedke, S., Schmitz, T., Prume, K., et al.: Direct hysteresis measurements of single nanosized ferroelectric capacitors contacted with an atomic force microscope. Appl. Phys. Lett. 79, 3678–3680 (2001)

    Article  Google Scholar 

  31. Schilling, A., Adams, T., Bowman, R.M., et al.: Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures. Nanotechnology 18, 035301 (2007)

    Article  Google Scholar 

  32. Hambe, M., Wicks, S., Gregg, J.M., et al.: Creation of damage-free ferroelectric nanostructures via focused ion beam milling. Nanotechnology 19, 175302 (2008)

    Article  Google Scholar 

  33. Morelli, A., Johann, F., Schammelt, N., et al.: Ferroelectric nanostructures fabricated by focused-ion-beam milling in epitaxial BiFeO3 thin films. Nanotechnology 22, 265303 (2011)

    Article  Google Scholar 

  34. Rémiens, D., Soyer, C., Troadec, D., et al.: Integration and optimisation of PZT piezoelectric thin films in micro and nano dimensional structures. Micro. Nanosyst. 1, 214–225 (2009)

    Article  Google Scholar 

  35. Gatoux, A., Ferri, A., Detalle, M., et al.: Characterizing nanoscale electromechanical fatigue in Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films by piezoresponse force microscopy. Thin Solid Films 520, 591–594 (2011)

    Article  Google Scholar 

  36. Detalle, M., Wang, G., Rémiens, D., et al.: Comparison of structural and electrical properties of PMN-PT films deposited on Si with different bottom electrodes. J. Cryst. Growth 305, 137–143 (2007)

    Article  Google Scholar 

  37. Herdier, R., Detalle, M., Jenkins, D., et al.: Piezoelectric thin films for MEMS applications-A comparative study of PZT, 0.7PMN-0.3PT and 0.9PMN-0.1PT thin films grown on Si by r.f. magnetron sputtering. Sens. Actuators. A. Phys. 148, 122–128 (2008)

    Article  Google Scholar 

  38. Gruverman, A., Auciello, O., Tokumoto, H.: Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu. Rev. Mater. Sci. 28, 101–123 (1998)

    Article  Google Scholar 

  39. Alexe, M., Gruverman, A. (eds.): Nanoscale Characterisation of Ferroelectric Materials – Scanning Probe Microscopy Approach. Springer, Berlin (2004)

    Google Scholar 

  40. Balke, N., Bidkin, N., Kalinin, S.V., et al.: Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J. Am. Ceram. Soc. 92, 1629–1647 (2009)

    Article  Google Scholar 

  41. Soergel, E.: Piezoresponse force microscopy (PFM). J. Phys. D: App. Phys. 44, 46400–46417 (2011)

    Article  Google Scholar 

  42. Ferri, A., Da Costa, A., Desfeux, R., et al.: Nanoscale investigations of electrical properties in relaxor Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films deposited on platinum and LaNiO3 electrodes by means of local piezoelectric response. Integr. Ferroelectr. 91, 80–96 (2007)

    Article  Google Scholar 

  43. Desfeux, R., Ferri, A., Legrand, C., et al.: Nanoscale investigations of switching properties and piezoelectric activity in ferroelectric thin films using piezoresponse force microscopy. Int. J. Nanotechnol. 5, 827–837 (2008)

    Article  Google Scholar 

  44. Ziegler, J.F. (ed.): The Stopping and Range of Ions in Solids. Pergamon, New York (1985)

    Google Scholar 

  45. Meng, J.F., Katiyar, R.S., Zou, G.T., et al.: Raman phonon modes and ferroelectric phase transitions in nanocrystalline lead zirconate titanate. Phys. Status Solidi A 164, 851–862 (1997)

    Article  Google Scholar 

  46. Lou, X., Hu, X., Zhang, M., et al.: Phase separation in lead zirconate titanate and bismuth titanate during electrical shorting and fatigue. J. Appl. Phys. 99, 044101–044107 (2006)

    Article  Google Scholar 

  47. Frantti, J., Lantto, V., Nishio, S., et al.: Effect of A- and B-cation substitutions on the phase stability of PbTiO3 ceramics. Phys. Rev. B 59, 12–15 (1999)

    Article  Google Scholar 

  48. Nomura, K., Takeda, Y., Maeda, M., et al.: In situ observation of the crystallization process of ferroelectric thin films by Raman microspectroscopy. Jpn. J. Appl. Phys. Pt. 1 39, 5247–5251 (2000)

    Article  Google Scholar 

  49. Kang, M.G., Kim, K.T., Kim, C.I.: Plasma-induced damage in PZT thin films etched by inductively coupled plasma. Thin Solid Films 435, 222–226 (2003)

    Article  Google Scholar 

  50. Soyer, C., Cattan, E., Rémiens, D.: Ion beam etching of lead–zirconate–titanate thin films: correlation between etching parameters and electrical properties evolution. J. Appl. Phys. 92, 1048–1055 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the postdoctoral project provided by the French Minister for Research and New Technologies. The authors want to thank the Université de Valenciennes et du Hainaut Cambrésis and the Université d’Artois. The authors gratefully acknowledge Dr. J. F. Blach, Dr. R. H. Liang, Dr. C. Soyer, and Dr. S. Quignon for the collaboration in this work. The authors also wish to thank L. Maës for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ferri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferri, A., Rémiens, D., Desfeux, R., Da Costa, A., Deresmes, D., Troadec, D. (2013). Evaluation of Damages Induced by Ga+-Focused Ion Beam in Piezoelectric Nanostructures. In: Wang, Z. (eds) FIB Nanostructures. Lecture Notes in Nanoscale Science and Technology, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-02874-3_17

Download citation

Publish with us

Policies and ethics