Skip to main content

Main Operating Regimes of Fiber Lasers

  • Chapter
  • First Online:
Fundamentals of Fiber Lasers and Fiber Amplifiers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 181))

Abstract

As solid-state lasers, fiber lasers demonstrate the same types of operating regimes. However, the physical processes that take place in gain media (the fiber core) create challenges that are unique to fiber lasers, mainly because of their small cross-section dimensions compared with other active media (typical core diameter of diffraction-limited fiber lasers: 6–30 μm) and the very long length of gain material (typically in the multimeter scale). In comparison, semiconductor lasers also have gain material with very small cross-sectional dimensions, but the gain material length is on the submillimeter scale. In addition, because of the rare-earth nature of fiber lasers’ active ions, energy storage in fiber laser systems is high. In addition to possibility of high energy/peak power pulse production by fiber lasers, these characteristics create challenges in nonlinear processes and damage processes, which have to be addressed during fiber laser design and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. Hellwarth, Control of fluorescent pulsations, in Advances in Quantum Electronics, ed. by J.R. Singer (Columbia University Press, New York, 1961), pp. 334–341

    Google Scholar 

  2. W.G. Wagner, B.A. Lengyel, Evaluation of the giant pulse in a laser. J. Appl. Phys. 34(7), 2040–2046 (1963)

    Article  Google Scholar 

  3. W. Koechner, Solid-State Laser Engineering, 5th edn. (Springer, Berlin, 1999), p. 746

    Book  MATH  Google Scholar 

  4. A.V. Smith, B.T. Do, Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm. Appl. Opt. 47(26), 418–4832 (2008)

    Article  Google Scholar 

  5. F.Y. Génin, A. Salleo, T.V. Pistor, L.L. Chase, Role of light intensification by cracks in optical breakdown on surfaces. J. Opt. Soc. Am. A: 18, 2607–2616 (2001)

    Article  Google Scholar 

  6. Z.J. Chen, A.B. Grudinin, J. Porta, J.D. Minelly, Enhanced Q switching in double-clad fiber lasers. Opt. Lett. 23, 454–456 (1998)

    Article  Google Scholar 

  7. A.M. Ratner, Spectral, Spatial, and Temporal Properties of Lasers (Plenum Press, New York, 1972), pp. 1–220

    Book  Google Scholar 

  8. D.J. Kuizenga, A.E. Siegman, FM and AM mode locking of the homogeneous laser—Part I: Theory. IEEE J. Quantum Electron. 6(11), 694–708 (1970)

    Article  Google Scholar 

  9. A. Siegman, Lasers (University Science books, USA, 1986), p. 1283

    Google Scholar 

  10. H. Statz, G.A. deMars, Quantum Electronics, ed. by C.H. Townes (Columbia University Press, New York, 1960), p. 530

    Google Scholar 

  11. O. Svelto, Principles of Lasers, 4th edn. (Plenum Press, New York, 1998), p. 605

    Book  Google Scholar 

  12. D.H. Gill, B.E. Newnam, Picosecond-pulse damage studies of diffraction gratings, in Damage in Laser Materials, vol. 727, ed. by H.E. Bennett, A.H. Guenther, D. Milam, B.E. Newnam (National Bureau of Standards Special Publication, USA, 1986), pp. 154–161

    Google Scholar 

  13. E.G. Loewen, E. Popov, Diffraction Gratings and Applications (Marcel Dekker, Inc., New York, 1997), p. 485

    Google Scholar 

  14. C.A. Huguley, J.S. Loomis, Optical material damage from 10.6 µm CW radiation, in Damage in Laser Materials, vol. 435, ed. by A.J. Glass, A.H. Guenther (National Bureau of Standards Special Publication, USA, 1975)

    Google Scholar 

  15. D.C. Hanna, R.M. Percival, I.R. Perry, R.G. Smart, P.J. Suni, A.C. Tropper, An Ytterbium-doped monomode fibre laser: broadly tunable operation from 1.010 μm to 1.162 μm and three level operation at 974 nm. J. Mod. Opt. 37(4), 517–525 (1990)

    Article  Google Scholar 

  16. I.J. Hodgkinson, J.I. Vukusic, Birefringent filters for tuning flashlamp-pumped dye lasers: simplified theory and design (T). Appl. Opt. 17, 1944–1948 (1978)

    Article  Google Scholar 

  17. D.C. Hanna, R.M. Percival, R.G. Smart, A.C. Tropper, Efficient and tunable operation of a \( Tm^{3 + } \)-doped fibre laser. Opt. Commun. 75, 283–286 (1989)

    Google Scholar 

  18. T. Erdogan, Fiber grating spectra. J. Lightwave Technol. 15, 1227–1294 (1997)

    Article  Google Scholar 

  19. A. Othonos, K. Kalli, FBG: Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, 1999). Chapter 5

    Google Scholar 

  20. V.C. Lauridsen et al., Design of DFB fiber lasers, in Proceedings of ECOC, vol. 3, (Edinburgh, UK, 1997), pp. 39–42

    Google Scholar 

  21. M. Ibsen et al., Robust high power (> 20 mW) all-fiber DFB lasers with unidirectional and truly single polarization outputs, Conference Proceedings, CLEO’ 99, (Wasgington DC, OSA, 1999), pp. 245–246

    Google Scholar 

  22. A.L. Schawlow, C.H. Townes, Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958)

    Article  Google Scholar 

  23. N.Y. Voo, P. Horak, M. Ibsen, W.H. Loh, Linewidth and phase noise characteristics of DFB fibre lasers, in Proceedings SPIE, vol. 5620, 2004, Solid State Laser Technologies and Femtosecond Phenomena, eds. by Jonathan A. C. Terry; W. Andrew Clarkson, pp. 179–186

    Google Scholar 

  24. NP Photonics, Scorpion’ Laser Module, Product Data Sheet Rev 4. Available at: http://www.npphotonics.com/files/Laser_Module.pdf

  25. W.H. Loh, S.D. Butterworth, W.A. Clarkson, Efficient distributed feedback erbium-doped germanosilicate fiber laser pumped in the 520 nm band. Electron. Lett. 32, 2088–2089 (1996)

    Article  Google Scholar 

  26. Y. Gan, W.H. Xiang, G.Z. Zhang, Studies on ytterbium-doped fibre laser operating in different regime. J. Phys: Conf. Ser. 48, 795–799 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerii (Vartan) Ter-Mikirtychev .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ter-Mikirtychev, V.(. (2014). Main Operating Regimes of Fiber Lasers. In: Fundamentals of Fiber Lasers and Fiber Amplifiers. Springer Series in Optical Sciences, vol 181. Springer, Cham. https://doi.org/10.1007/978-3-319-02338-0_8

Download citation

Publish with us

Policies and ethics