Skip to main content

Electronic Nose and Its Application to Microbiological Food Spoilage Screening

  • Chapter
  • First Online:
Sensing Technology: Current Status and Future Trends II

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 8))

Abstract

Electronic Nose (EN) is a machine designed for detecting and discriminating complex odours using an array of broadly specific chemical sensors by mimicking the working mechanism and the main building blocks of biological olfaction. ENs are valuable candidates to be applied in various areas of food quality control, including microbial contamination diagnosis. In this chapter the EN technology is presented and its exploitation for microbiological screening of food products is reviewed. Two paradigmatic examples are presented. Both advantages and drawbacks of sensor technology in food quality control are discussed. Despite of many successful results, the high intrinsic variability of food samples together with persisting limits of the sensor technology still impair ENs trustful applications at the industrial scale thus further research efforts and technology improvements are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Buck, R. Axel, A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1), 175–187 (1991)

    Article  Google Scholar 

  2. M. Pardo, G. Sberveglieri, Electronic olfactory systems based on metal oxide semiconductor sensor arrays. Mrs Bull. 29(10), 703–708 (2004)

    Article  Google Scholar 

  3. T.C. Pearce, S.S. Schiffman, H.T. Nagle, J.W. Gardner, Handbook of Machine Olfaction (Wiley, NY, 2002)

    Book  Google Scholar 

  4. W.F. Wilkens, J.D. Hartman, An electronic analogue for the olfactory process. Ann. NY Acad. Sci. 116, 608–612 (1964)

    Article  Google Scholar 

  5. R.W. Moncrieff, An instrument for measuring and classifying odours. J. Appl. Physiol 16, 742–749 (1961)

    Google Scholar 

  6. K.C. Persaud, G.H. Dodd, Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature 299, 352–355 (1982)

    Article  Google Scholar 

  7. H. Shurmer, Development of an electronic nose. Phys. Technol. 18(4), 170–176 (1987)

    Article  Google Scholar 

  8. J.W. Gardner, Pattern recognition in the Warwick electronic nose, 8th International Congress of the European Chemoreception Research Organisation, Coventry (UK), (1988)

    Google Scholar 

  9. Linda M. Reid, Colm P. O’Donnell, Gerard Downey, Recent technological advances for the determination of food authenticity. Trends Food Sci. Technol. 17(7), 344–353 (2006)

    Google Scholar 

  10. K. Arora, S. Chand, B.D. Malhotra, Recent developments in bio-molecular electronics techniques for food pathogens. Anal. Chim. Acta 568(1–2), 259–274 (2006)

    Google Scholar 

  11. E. Schaller, J.O. Bosset, F. Escher, Electronic noses and their application to food. Food Sci.Technol. Lab. 31(4), 305–316 (1998)

    Article  Google Scholar 

  12. M. Ghasemi-Varnamkhasti, S. SaeidMohtasebi, M. Siadat, Biomimetic-based odor and taste sensing systems to food quality and safety characterization: an overview on basic principles and recent achievements. J. Food Eng. 100, 377–387 (2010)

    Article  Google Scholar 

  13. A. Berna, Metal oxide sensors for electronic noses and their application to food analysis. Sensors 10, 3882–3910 (2010). doi:10.3390/s100403882

    Article  Google Scholar 

  14. A.D. Wilson, M. Baietto, Applications and advances in electronic-nose technologies. Sensors 9, 5099–5148 (2009). doi:10.3390/s90705099

    Article  Google Scholar 

  15. M. Peris, L. Escuder-Gilabert, A 21st century technique for food control: electronic noses. Anal. Chim. Acta 638(1), 1–15 (2009)

    Article  Google Scholar 

  16. N. Sahgal, R. Needham, F.J. Cabanes, N. Magan, Potential for detection and discrimination between mycotoxigenic and non-toxigenic spoilage moulds using volatile production patterns: a review. Food Addit. Contam. 24(10), 1161–1168 (2007)

    Article  Google Scholar 

  17. N. Magan, P. Evans, Volatiles as an indicator of fungal activity and differentiation between species, and the potential use of electronic nose technology for early detection of grain spoilage. J. Stored Prod. Res. 36, 319–340 (2000)

    Article  Google Scholar 

  18. M.J. Saxby, Food Taints and Off-flavours, 1st edn. (Blackie Academic and Professional, Cambridge, 1993)

    Google Scholar 

  19. N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B 5, 7–19 (1991)

    Article  Google Scholar 

  20. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)

    Article  Google Scholar 

  21. E. Comini, G. Faglia, G. Sberveglieri, Z.R. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81, 1869–71 (2002)

    Article  Google Scholar 

  22. M. Vezzoli, A. Ponzoni, M. Pardo, M. Falasconi, G. Faglia, G. Sberveglieri, Exploratory data analysis for industrial safety application. Sens. Actuators B Chem. 131(1), 100–109 (2008)

    Article  Google Scholar 

  23. D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. De Jong, P.J. Lewi, J. Smeyers-Verbeke, in Handbook of Chemometrics and Qualimetrics Part A, Chap. 17, (Elsevier, Amsterdam, 1997)

    Google Scholar 

  24. M. Pardo, G. Sberveglieri, Classification of electronic nose data with support vector machines. Sens. Actuators B Chem. 107(2), 730–737 (2005)

    Article  Google Scholar 

  25. D.L. Massart, B.G.M. Vandeginste, L.M.C. Buydens, S. De Jong, P.J. Lewi, J. Smeyers-Verbeke, in Handbook of Chemometrics and Qualimetrics Part B, Chap. 37, (Elsevier, Amsterdam, 1997)

    Google Scholar 

  26. M. Falasconi, I. Concina, E. Gobbi, V. Sberveglieri, A. Pulvirenti, and G. Sberveglieri, Electronic nose for microbiological quality control of food products. Int. J. Electrochem. 2012, Article ID 715763, p. 12, (2012). doi:10.1155/2012/715763

  27. M. Falasconi, E. Gobbi, M. Pardo, A. Bresciani, G. Sberveglieri, Detection of toxigenic strains of Fusariumverticillioides in corn by electronic olfactory system. Sens. Actuators B Chem. 108, 250–257 (2005)

    Article  Google Scholar 

  28. E. Gobbi, M. Falasconi, E. Torelli, G. Sberveglieri, Electronic nose predicts high and low fumonisin contamination in maize cultures. Food Res. Int. 44, 992–999 (2011)

    Article  Google Scholar 

  29. F. Cheli, A. Campagnoli, L. Pinotti, G. Savoini, V. Dell’Orto, Electronic nose for determination of aflatoxins in maize. Biotechnol. Agron. Soc. Environ. 13, 39–43 (2009)

    Google Scholar 

  30. R. Paolesse, A. Alimelli, E. Martinelli, C. Di Natale, A. D’Amico, M.G. D’Egidio, G. Aureli, A. Ricelli, C. Fanelli, Detection of fungal contamination of cereal grain samples by an electronic nose. Sens. Actuators B Chem. 119(2), 425–430 (2006)

    Article  Google Scholar 

  31. P. Evans, K.C. Persaud, A.S. McNeish, R.W. Sneath, N. Hobson, N. Magan, Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sens. Actuators B Chem. 69, 348–358 (2000)

    Article  Google Scholar 

  32. S. Balasubramanian, S. Panigrahi, B. Kottapalli, C.E. Wolf-Hall, Evaluation of an artificial olfactory system for grain quality discrimination. Lwt-Food Sci. Technol. 40(10), 1815–1825 (2007)

    Article  Google Scholar 

  33. J. Olsson, T. Börjesson, T. Lundstedt, J. Schnürer, Volatiles for mycological quality grading of barley grains: determinations using gas chromatography-mass spectrometry and electronic nose. Int. J. Food Microbiol. 59, 167–178 (2000)

    Article  Google Scholar 

  34. J. Olsson, T. Borjesson, T. Lundstedt, J. Schnurer, Detection and quantification of ochratoxinA and deoxynivalenol in barley grains by GC-MS and electronic nose. Int. J. Food Microbiol. 72, 203–214 (2002)

    Article  Google Scholar 

  35. A. Jonsson, F. Winquist, J. Schnurer, H. Sundgren, I. Lundstrom, Electronic nose for microbial quality classification of grains. Int. J. Food Microbiol. 35, 187–193 (1997)

    Article  Google Scholar 

  36. V. Sberveglieri, I. Concina, M. Falasconi, E. Gobbi, A. Pulvirenti, P. Fava, Early detection of fungal contamination on green coffee by a MOX sensors based electronic nose, in AIP Conference Proceedings, 14th International Symposium on Olfaction and Electronic Nose, ISOEN 2011, vol. 1362, (New York City, 2011) pp. 19–120

    Google Scholar 

  37. S. Marin, M. Vinaixa, J. Brezmes, E. Llobet, X. Vilanova, X. Correig, A.J. Ramos, V. Sanchis, Use of a MS-electronic nose for prediction of early fungal spoilage of bakery products. Int. J. Food Microbiol. 114(1), 10–16 (2007)

    Article  Google Scholar 

  38. R. Needham, J. Williams, N. Beales, P. Voysey, N. Magan, Early detection and differentiation of spoilage of bakery products. Sens. Actuators B Chem. 106(1), 20–23 (2005)

    Article  Google Scholar 

  39. S. Panigrahi, S. Balasubramanian, H. Gu, C. Logue, M. Marchello, Neural-network-integrated electronic nose system for identification of spoiled beef. Lwt-Food Sci. Technol. 39(2), 135–145 (2006)

    Article  Google Scholar 

  40. S. Balasubramanian, S. Panigrahi, C.M. Logue, C. Doetkott, M. Marchello, J.S. Sherwood, Independent component analysis-processed electronic nose data for predicting Salmonella typhimurium populations in contaminated beef. Food Control 19(3), 236–246 (2008)

    Article  Google Scholar 

  41. N. ElBarbri, E. Llobet, N. El Bari, X. Correig, B. Bouchikhi, Electronic nose based on metal oxide semiconductor sensors as an alternative technique for the spoilage classification of red meat. Sensors 8, 142–156 (2008)

    Article  Google Scholar 

  42. Olga S. Papadopoulou, Efstathios Z. Panagou, Fady R. Mohareb, George-John E. Nychas, Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis. Food Res. Int. 50(1), 241–249 (2013)

    Article  Google Scholar 

  43. L.R. Khot, S. Panigrahi, C. Doetkott, Y. Chang, J. Glower, J. Amamcharla, C. Logue, J. Sherwood, Evaluation of technique to overcome small dataset problems during neural-network based contamination classification of packaged beef using integrated olfactory sensor system. LWT-Food Sci. Technol. 45(2), 233–240 (2012)

    Article  Google Scholar 

  44. D. Wang, X. Wang, T. Liu, Y. Liu, Prediction of total viable counts on chilled pork using an electronic nose combined with support vector machine. Meat Sci. 90(2), 373–377 (2012)

    Article  Google Scholar 

  45. N. ElBarbri, J. Mirhisse, R. Ionescu, N. El Bari, X. Correig, B. Bouchikhi, E. Llobet, An electronic nose system based on a micro-machined gas sensor array to assess the freshness of sardines. Sens. Actuators B Chem. 141, 538–543 (2009)

    Article  Google Scholar 

  46. J. Chantarachoti, A.C.M. Oliveira, B.H. Himelbloom, C.A. Crapo, D.G. McLachlan, Portable electronic nose for detection of spoiling Alaska pink salmon (Oncorhynchusgorbuscha). J. Food Sci. 71, S414–S421 (2006)

    Article  Google Scholar 

  47. W.X. Du, C.M. Lin, T. Huang, J. Kim, M. Marshall, C.I. Wei, Potential application of the electronic nose for quality assessment of Salmon fillets under various storage conditions. JFS: Food Microbiol Saf. 67, 307 (2002)

    Article  Google Scholar 

  48. G. Olafsdottir, E. Chanie, F. Westad, R. Jonsdottir, C.R. Thalmann, S. Bazzo, S. Labreche, P. Marcq, F. Lundby, J.E. Haugen, JFS S: Sens. Nutr. Qualities Food 70, S563 (2005)

    Google Scholar 

  49. J.E. Haugen, K. Rudi, S. Langsrud, S. Bredholt, Application of gas-sensor array technology for detection and monitoring of growth of spoilage bacteria in milk: a model study. Anal. Chim. Acta 565(1), 10–16 (2006)

    Article  Google Scholar 

  50. S. Benedetti, S. Iametti, F. Bonomi, S. Mannino, Head space sensor array for the detection of Aflatoxin M1 in Raw Ewe’s milk. J. Food Prot. 68, 1089–1092 (2005)

    Google Scholar 

  51. N. Magan, A. Pavlou, I. Chrysanthakis, Milk-sense: a volatile sensing system recognises spoilage bacteria and yeasts in milk. Sens. Actuators B Chem. 72, 28–34 (2001)

    Article  Google Scholar 

  52. S. Labreche, S. Bazzo, S. Cade, E. Chanie, Shelf life determination by electronic nose: application to milk. Sens. Actuators B Chem. 106, 199–206 (2005)

    Article  Google Scholar 

  53. C. Li, N.E. Schmidt, R. Gitaitis, Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS. LWT-Food Sci. Technol. 44, 1019–1025 (2011)

    Article  Google Scholar 

  54. I. Concina, M. Falasconi, E. Gobbi, F. Bianchi, M. Musci, Mattarozzi, M. Pardo, A. Mangia, M. Careri, G. Sberveglieri, Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control 20, 873–880 (2009)

    Article  Google Scholar 

  55. E. Gobbi, M. Falasconi, I. Concina, G. Mantero, F. Bianchi, M. Mattarozzi, M. Musci, G. Sberveglieri, Electronic nose and Alicyclobacillus spp. spoilage of fruit juices: an emerging diagnostic tool. Food Control 21(10), 1374–1382 (2010)

    Article  Google Scholar 

  56. S. Cagnasso, M. Falasconi, MP. Previdi, B. Franceschini, C. Cavalieri, V. Sberveglieri, P. Rovere, Rapid screening of Alicyclobacillus acidoterrestris spoilage of fruit juices by electronic nose: a confirmation study. J. Sens. (2010). Article ID 143173. doi:10.1155/2010/143173

  57. Piroska Hartyáni, István Dalmadi, Dietrich Knorr, Electronic nose investigation of Alicyclobacillus acidoterrestris inoculated apple and orange juice treated by high hydrostatic pressure. Food Control 32(1), 262–269 (2013)

    Article  Google Scholar 

  58. J. Gruber, H.M. Nascimento, E.Y. Yamauchi, R.W.C. Li, C.H.A. Esteves, G.P. Rehder, C.C. Gaylarde, M.A. Shirakawa, A conductive polymer based electronic nose for early detection of Penicillium digitatum in post-harvest oranges. Mater. Sci. Eng. C 33(5), 2766–2769 (2013)

    Article  Google Scholar 

  59. I. Concina, M. Bornšek, S. Baccelliere, M. Falasconi, E. Gobbi, G. Sberveglieri, Alicyclobacillus spp.: detection in soft drinks by electronic nose. Food. Res. Int. 43(8), 2108–2114 (2010)

    Article  Google Scholar 

  60. A.Z. Berna, S. Trowell, W. Cynkar, D. Cozzolino, Comparison of metal oxide-based electronic nose and mass spectrometry-based electronic nose for the prediction of red wine spoilage. J. Agric. Food Chem. 56, 3238–3244 (2008)

    Article  Google Scholar 

  61. M. Walker, C.A. Phillips, Alicyclobacillus acidoterrestris: an increasing threat to the fruit juice industry? Int J. Food Sci. Technol. 43(2), 250–260 (2008)

    Google Scholar 

  62. S.S. Chang, D.H. Kang, Alicyclobacillus spp. in the fruit juice industry: history, characteristics, and current isolation/detection procedures. Crit. Rev. Microbiol. 30(2), 55–74 (2004)

    Article  MathSciNet  Google Scholar 

  63. N. Jensen, F.B. Whitfield, Role of Alicyclobacillusacidoterrestris in the development of a disinfectant taint in shelf-stable fruit juice. Lett. Appl. Microbiol. 36(1), 9–14 (2003)

    Article  Google Scholar 

  64. R. Etzel, Mycotoxins. JAMA 287, 527–528 (2002)

    Article  Google Scholar 

  65. M. Nakajima, H. Tsubouchi, M. Miyabe, Y. Ueno, Survey of aflatoxin B1 and ochratoxinA in commercial green coffee beans by high performance liquid chromatography linked with immunoaffinity chromatography. Food Agric. Immunol. 9, 77–83 (1997)

    Article  Google Scholar 

  66. K. Karloshøj, P.V. Nielsen, T.O. Larsen, Differentiation of closely related fungi by electronic nose analysis. J. Food Sci. 72, 187–192 (2007)

    Article  Google Scholar 

  67. F. Röck, N. Barsan, U. Weimar, Electronic nose: current status and future trends. Chem. Rev. 108(2), 705–725 (2008)

    Article  Google Scholar 

  68. E. Comini, G. Faglia, G. Sberveglieri, Solid State Gas Sensing, (Springer, Berlin, 2008). ISBN: 978-0-387-09664-3

    Google Scholar 

  69. S. Di Carlo, M. Falasconi, E. Sanchez, A. Scionti, G. Squillero, A. Tonda, Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation. Pattern Recogn. Lett. 32(13), 1594–1603 (2011)

    Article  Google Scholar 

  70. M. Padilla, A. Perera, I. Montoliu, A. Chaudry, Drift compensation of gas sensor array data by orthogonal signal correction. Chemometr. Intell. Lab. Syst. 100(1), 28–35 (2010)

    Article  Google Scholar 

  71. O. Tomic, T. Eklov, K. Kvaal, J.E. Haugen, Recalibration of a gas-sensor array system related to sensor replacement. Anal. Chim. Acta 512(2), 199–206 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge CAFIS project POR-FERS 2007/2013 and Consorzio Casalasco del Pomodoro Soc.Agr.Coop (Cremona, Italy) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Falasconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Falasconi, M., Comini, E., Concina, I., Sberveglieri, V., Gobbi, E. (2014). Electronic Nose and Its Application to Microbiological Food Spoilage Screening. In: Mason, A., Mukhopadhyay, S., Jayasundera, K., Bhattacharyya, N. (eds) Sensing Technology: Current Status and Future Trends II. Smart Sensors, Measurement and Instrumentation, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-02315-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02315-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02314-4

  • Online ISBN: 978-3-319-02315-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics