Abstract
This chapter reviews techniques of model reduction of fluid dynamics systems. Fluid systems are known to be difficult to reduce efficiently due to several reasons. First of all, they exhibit strong nonlinearities — which are mainly related either to nonlinear convection terms and/or some geometric variability — that often cannot be treated by simple linearization. Additional difficulties arise when attempting model reduction of unsteady flows, especially when long-term transient behavior needs to be accurately predicted using reduced order models and more complex features, such as turbulence or multiphysics phenomena, have to be taken into consideration. We first discuss some general principles that apply to many parametric model order reduction problems, then we apply them on steady and unsteady viscous flows modelled by the incompressible Navier-Stokes equations. We address questions of inf-sup stability, certification through error estimation, computational issues and — in the unsteady case — long-time stability of the reduced model. Moreover, we provide an extensive list of literature references.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
1 In practice, N r POD modes are required to resolve the first N r /2 temporal harmonics, and these can be computed from N s = 2N r snapshots [96].
- 2.
2 For numerical stability reasons the PODeigenvalues are usually not computed from the correlation matrix itself, but rather as the squares of the singular values of the snapshot matrix obtained by collecting all the snapshots as column vectors.
- 3.
3 Gram-Schmidt orthonormalization is required in order to ensure the algebraic stability of the reduced basis approximation. Furthermore, in case of parameter-dependent geometries, the velocity space has to be enriched, as detailed in Sect. 9.3.
- 4.
4 This algorithm has been first introduced in [64] for both coercive and noncoercive problems, analyzed in [107] in the coercive case and afterwards improved in [32]. A general version using the so-called “natural norm” [110] has been analyzed in [61], where it has been applied to noncoercive problems such as Helmholtz equations — the simpler coercive case can be seen as a particular instance where the stability factor is just the coercivity constant.
References
Ahuja, MS., Rowley, C.: Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators. J. Fluid Mech 645, 447–478 (2010)
Akhtar, I., Nayfeh, A., Ribbens, C.: On the stability and extension of reduced-order Galerkin models in incompressible flows. Theor. Comp. Fluid Dyn. 23(3), 213–237 (2009)
Amsallem, D., Cortial, J., Carlberg, K., Farhat, C.: A method for interpolating on manifolds structural dynamics reduced-order models. Int. J. Numer. Methods Engr. 80(9), 1241–1258 (2009)
Amsallem, D., Farhat, C.: An online method for interpolating linear parametric reducedorder models. SIAM J. Sci. Comput. 33(5), 2169–2198 (2011)
Amsallem, D., Zahr, M., Farhat, C.: Nonlinear model order reduction based on local reduced-order bases. Int. J. Numer. Methods Engr. 92(10), 891–916 (2012)
Antil, H., Heinkenschloss, M., Hoppe, R.: Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system. Optim. Methods Softw. 26(4-5), 643–669 (2011)
Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM (2005)
Astrid, P., Weiland, S., Willcox, K., Backx, T.: Missing point estimation in models described by proper orthogonal decomposition. IEEE. T. Automat. Contr. 53(10), 2237–2251 (2008)
Aubry, N., Holmes, P., Lumley, J., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192(115), 173 (1988)
Aubry, N., Holmes, P., Lumley, J., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192(115), 355 (1988)
Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)
Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971).
Baiges, J., Codina, R., Idelsohn, S.: Explicit reduced order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids (2013). DOI 10.1002/fld.3777
Barbagallo, A., Sipp, D., Schmid, P.J.: Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641(1), 1–50 (2009)
Barone, M.F., Kalashnikova, I., Segalman, D.J., Thornquist, H.K.: Stable Galerkin reduced order models for linearized compressible flow. J. Comp. Phys. 228(6), 1932–1946 (2009)
Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris. Sér. I Math. 339(9), 667–672 (2004)
Bergmann, M., Bruneau, C., Iollo, A.: Enablers for robust POD models. J. Comp. Phys. 228(2), 516–538 (2009)
Bergmann, M., Cordier, L.: Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comp. Phys. 227(16), 7813–7840 (2008)
Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)
Brezzi, F.: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. R.A.I.R.O., Anal. Numér. 2, 129–151 (1974)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer-Verlag, New York (1991)
Brezzi, F., Rappaz, J., Raviart, P.: Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer. Math. 36, 1–25 (1980)
Buffa, A., Maday, Y., Patera, A., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM Math. Modelling Numer. Anal. 46(3), 595–603 (2012)
Bui-Thanh, T., Willcox, K., Ghattas, O.: Parametric reduced-order models for probabilistic analysis of unsteady aerodynamics applications. AIAA J. 46(10) (2008)
Bui-Thanh, T., Willcox, K., Ghattas, O., van Bloemen Waanders, B.: Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comp. Phys. 224(2), 880–896 (2007)
Burkardt, J., Gunzburger, M., Lee, H.: Centroidal Voronoi tessellation-based reduced-order modeling of complex systems. SIAM J. Sci. Comput. 28(2), 459–484 (2006)
Burkardt, J., Gunzburger, M., Lee, H.: POD and CVT-based reduced-order modeling of Navier-Stokes flows. Comput. Meth. Appl. Mech. Engrg. 196(1-3), 337–355 (2006)
Caloz, G., Rappaz, J.: Numerical analysis for nonlinear and bifurcation problems. In: P. Ciarlet, J. Lions (eds.) Handbook of Numerical Analysis, Vol. V, Techniques of Scientific Computing (Part 2), pp. 487–637. Elsevier Science B.V., Amsterdam (1997)
Carlberg, K., Farhat, C.: A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems. Int. J. Numer. Methods Engr. 86(3), 381–402 (2011)
Cazemier, W., Verstappen, R., Veldman, A.: Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Phys. Fluids 10, 1685 (1998)
Chaturantabut, S., Sorensen, D.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)
Chen, X., Akella, S., Navon, I.: A dual-weighted trust-region adaptive POD 4-D Var applied to a finite-volume shallow water equations model on the sphere. Int. J. Numer. Methods Fluids 68(3), 377–402 (2012)
Chen, Y., Hesthaven, J., Maday, Y., Rodriguez, J.: A monotonic evaluation of lower bounds for inf-sup stability constants in the frame of reduced basis approximations. C. R. Acad. Sci. Paris. Sér. I Math. 346, 1295–1300 (2008)
Christensen, E., Brøns, M., Sørensen, J.: Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows. SIAM J. Sci. Comput. 21, 1419–1434 (2000)
Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vibration 324(1), 243–262 (2009)
Colonius, T., Rowley, C., Freund, J., Murray, R.: On the choice of norm for modeling compressible flow dynamics at reduced-order using the POD. In: Proc. 41st IEEE Conf. on Decision and Control, vol. 3, pp. 3273–3278. IEEE (2002)
Daescu, D., Navon, I.: Efficiency of a POD-based reduced second-order adjoint model in 4D-Var data assimilation. Int. J. Numer. Methods Fluids 53(6), 985–1004 (2007)
Daescu, D., Navon, I.: A dual-weighted approach to order reduction in 4DVAR data assimilation. Monthly Weather Review 136(3), 1026–1041 (2008)
Dahmen, W., Huang, C., Schwab, C., Welper, G.: Adaptive Petrov-Galerkin methods for first order transport equations. SIAM J. Numer. Anal. 50(5) (2012)
Deane, A., Kevrekidis, I., Karniadakis, G., Orszag, S.: Low-dimensionalmodels for complex geometry flows: Application to grooved channels and circular cylinders. Phys. Fluids 3(10), 2337–2354 (1991)
Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. part I: The transport equation. Comput. Methods Appl. Mech. Engr. 199(23-24), 1558–1572 (2010)
Demkowicz, L., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. II. optimal test functions. Numer. Methods Partial Differential Equations 27(1), 70–105 (2011)
Deparis, S.: Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach. SIAM J. Num. Anal. 46(4), 2039–2067 (2008)
Deparis, S., Løvgren, A.: Stabilized reduced basis approximation of incompressible three-dimensional Navier-Stokes equations in parametrized deformed domains. J. Sci. Comput. 50(1), 198–212 (2012)
Deparis, S., Rozza, G.: Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity. J. Comp. Phys. 228(12), 4359–4378 (2009)
Djouadi, S.: On the connection between balanced proper orthogonal decomposition, balanced truncation, and metric complexity theory for infinite dimensional systems. In: Proc. Am. Control Conf., June 30–July 2, Baltimore, MD, 2010 pp. 4911–4916 (2010)
Du, Q., Gunzburger, M.: Model reduction by proper orthogonal decomposition coupled with centroidal Voronoi tessellation. In: Proc. Fluids Engineering Division Summer Meeting, FEDSM2002-31051, ASME (2002)
Dumon, A., Allery, C., Ammar, A.: Proper general decomposition (PGD) for the resolution of Navier-Stokes equations. J. Comp. Phys. 230, 1387–1407 (2011)
Eftang, J., Knezevic, D., Patera, A.: An “hp” certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dynam. Syst. 17(4), 395–422 (2011)
Fahl, M.: Trust-region methods for flow control based on reduced order modelling. Ph.D. thesis, Universität Trier (2001)
Gerner, A., Veroy, K.: Certified reduced basis methods for parametrized saddle point problems. SIAM J. Sci. Comp. 34(5), A2812–A2836 (2012)
Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations: Theory and algorithms. Springer-Verlag, Berlin Heidelberg New York (1986)
Grepl, M., Patera, A.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM Math. Modelling Numer. Anal. 39(1), 157–181 (2005)
Grinberg, L., Yakhot, A., Karniadakis, G.: Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition. Ann. Biomed. Eng. 37(11), 2200–2217 (2009)
Gunzburger, M., Peterson, J., Shadid, J.: Reducer-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput. Methods Appl. Mech. Engrg. 196, 1030–1047 (2007)
Haasdonk, B.: Convergence rates of the POD-greedy method. ESAIM Math. Modelling Numer. Anal. (2013). DOI 10.1051/m2an/2012045
Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM Math. Modelling Numer. Anal. 42(02), 277–302 (2008)
Hall, K., Thomas, J., Clark, W.: Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J. 40(5), 879–886 (2002)
Hay, A., Borggaard, J., Akhtar, I., Pelletier, D.: Reduced-order models for parameter dependent geometries based on shape sensitivity analysis. J. Comp. Phys. 229(4), 1327–1352 (2010)
Hay, A., Borggaard, J., Pelletier, D.: Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition. J. Fluid Mech. 629, 41–72 (2009)
Holmes, P., Lumley, J., Berkooz, G.: Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge (1998)
Huynh, D., Knezevic, D., Chen, Y., Hesthaven, J., Patera, A.: A natural-norm successive constraint method for inf-sup lower bounds. Comput. Meth. Appl. Mech. Engrg. 199(29-32), 1963–1975 (2010)
Huynh, D., Knezevic, D., Patera, A.: A static condensation reduced basis element method: approximation and a posteriori error estimation. ESAIM Math. Modelling Numer. Anal. 47(1), 213–251 (2013)
Huynh, D., Knezevic, D., Peterson, J., Patera, A.: High-fidelity real-time simulation on deployed platforms. Comp. Fluids 43(1), 74–81 (2011)
Huynh, D., Rozza, G., Sen, S., Patera, A.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability costants. C. R. Acad. Sci. Paris. Sér. I Math. 345, 473–478 (2007)
Iapichino, L., Quarteroni, A., Rozza, G.: A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Methods Appl. Mech. Engrg. 221-222, 63–82 (2012)
Iollo, A., Lanteri, S., Désidéri, J.: Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations. Theor. Comp. Fluid Dyn. 13(6), 377–396 (2000)
Johansson, P., Andersson, H., Rønquist, E.: Reduced-basis modeling of turbulent plane channel flow. Comput. Fluids 35(2), 189–207 (2006)
Johnson, C., Rannacher, R., Boman, M.: Numerics and hydrodynamic stability: toward error control in computational fluid dynamics. SIAM J. Numer. Anal. 32(4), 1058–1079 (1995)
Kim, T.: Frequency-domain Karhunen-Loève method and its application to linear dynamic systems. AIAA J. 36(11), 2117–2123 (1998)
Knezevic, D., Nguyen, N., Patera, A.: Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations. Math. Mod. and Meth. in Appl. Sc. 21(7), 1415–1442 (2011)
Knezevic, D.J.: Reduced basis approximation and a posteriori error estimates for a multiscale liquid crystal model. Math. Comput. Model. Dynam. Syst. 17(4), 443–461 (2011)
Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2003)
Kunisch, K., Volkwein, S.: Optimal snapshot location for computing POD basis functions. ESAIM Math. Modelling Numer. Anal. 44(3), 509 (2010)
Lall, S., Marsden, J., Glavaški, S.: Empirical model reduction of controlled nonlinear systems. In: Proc. IFAC World Congress Vol. F. Int. Federation Automatic Control, Beijing, 1999 pp. 473–478 (1999)
Lall, S., Marsden, J., Glavaški, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12(6), 519–535 (2002)
Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: A reduced computational and geometrical framework for inverse problems in haemodynamics. Int. J. Numer. Meth. Biomed. Engng. 29(7), 741–776 (2013)
Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G.: Generalized reduced basis methods and n-width estimates for the approximation of the solutionmanifold of parametric PDEs. In: F. Brezzi, P. Colli Franzone, U. Gianazza, G. Gilardi (eds.) Analysis and Numerics of Partial Differential Equations. INdAM Series, vol. 4. Springer (2013). Re-printed also on Bollettino Unione Matematica Italiana (UMI), under permission/agreement Springer-UMI
Lassila, T., Quarteroni, A., Rozza, G.: A reduced basis model with parametric coupling for fluid-structure interaction problem. SIAM J. Sci. Comput. 34(2), A1187–A1213 (2012)
Leblond, C., Allery, C., Inard, C.: An optimal projection method for the reduced-order modeling of incompressible flows. Comput. Methods Appl. Mech. Engrg. 200, 2507–2527 (2011)
Lions, P.: Mathematical Topics in Fluid Mechanics. Oxford Lecture Series in Mathematics and Its Applications. Clarendon Press, Oxford, UK (1996)
Løvgren, A., Maday, Y., Rønquist, E.: A reduced basis element method for the steady Stokes problem. ESAIM Math. Modelling Numer. Anal. 40(3), 529–552 (2006)
Lucia, D., Beran, P., Silva, W.: Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40(1-2), 51–117 (2004)
Lumley, J.: The structure of inhomogeneous turbulent flows. In: Yaglom, A.M., Tatarski, (eds.) Atmospheric turbulence and radio wave propagation pp. 166–178 (1967)
Ma, X., Karniadakis, G., Park, H., Gharib, M.: DPIV-driven flow simulation: a new computational paradigm. Proc. R. Soc. A 459(2031), 547–565 (2003)
Maday, Y., Nguyen, N., Patera, A., Pau, G.: A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8(1) (2009)
Maday, Y., Patera, A., Turinici, G.: Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations. C.R. Acad. Sci. Paris. Sér. I Math. 335, 1–6 (2002)
Manzoni, A.: Reduced models for optimal control, shape optimization and inverse problems in haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne (2012)
Manzoni, A., Quarteroni, A., Rozza, G.: Shape optimization of cardiovascular geometries by reduced basis methods and free-form deformation techniques. Int. J. Numer. Methods Fluids 70(5), 646–670 (2012)
Maple, R., King, P., Orkwis, P., Wolff, J.: Adaptive harmonic balance method for nonlinear time-periodic flows. J. Comp. Phys. 193(2), 620–641 (2004)
McMullen, M.: The application of non-linear frequency domain methods to the Euler and Navier-Stokes equations. Ph.D. thesis, Stanford University, Stanford, CA, USA (2003)
Moore, B.: Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Contr. 26(1) (1981)
Néron, D., Ladevèze, P.: Proper generalized decomposition for multiscale and multiphysics problems. Arch. Comput. Methods Engrg. 17(4), 351–372 (2010)
Nguyen, N., Rozza, G., Patera, A.: Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers equation. Calcolo 46(3), 157–185 (2009)
Nguyen, N., Veroy, K., Patera, A.: Certified real-time solution of parametrized partial differential equations. In: Yip, S. (Ed.). Handbook of Materials Modeling pp. 1523–1558 (2005)
Noack, B., Afanasiev, K., Morzynski, M., Tadmor, G., Thiele, F.: A hierarchy of lowdimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497(1), 335–363 (2003)
Noack, B., Papas, P., Monkewitz, P.: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523(1), 339–365 (2005)
Noor, A., Peters, J.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)
Peterson, J.: The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10, 777–786 (1989)
Quarteroni, A.: Numerical Models for Differential Problems, 2nd ed. Modeling, Simulation and Applications (MS&A), Vol. 8. Springer-Verlag Italia, Milano (2014)
Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numer. Methods Partial Differential Equations 23(4), 923–948 (2007)
Quarteroni, A., Rozza, G., Manzoni, A.: Certified reduced basis approximation for parametrized partial differential equations in industrial applications. J. Math. Ind. 1(3) (2011)
Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin Heidelberg (1994)
Ravindran, S.: Reduced-order adaptive controllers for fluid flows using POD. J. Sci. Comput. 15(4), 457–478 (2000)
Ravindran, S.: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int. J. Numer. Meth. Fluids 34, 425–448 (2000)
Rowley, C.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 997–1014 (2005)
Rozza, G., Huynh, D., Manzoni, A.: Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125(1), 741–776 (2013). DOI 10.1007/s00211-013-0534-8
Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Engrg. 15, 229–275 (2008)
Rozza, G., Manzoni, A., Negri, F.: Reduction strategies for PDE-constrained optimization problems in haemodynamics. In: J. Eberhardsteiner et.al. (ed.) Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, September 10-14, 2012 (2012)
Rozza, G., Veroy, K.: On the stability of reduced basis methods for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg. 196(7), 1244–1260 (2007)
Sen, S., Veroy, K., Huynh, P., Deparis, S., Nguyen, N., Patera, A.: “natural norm” a posteriori error estimators for reduced basis approximations. J. Comp. Phys. 217(1), 37–62 (2006)
Sirisup, S., Karniadakis, G.: A spectral viscosity method for correcting the long-term behavior of POD models. J. Comp. Phys. 194(1), 92–116 (2004)
Sirisup, S., Karniadakis, G.: Stability and accuracy of periodic flow solutions obtained by a POD-penalty method. J. Phys. D 202(3), 218–237 (2005)
Sirisup, S., Karniadakis, G., Yang, Y., Rockwell, D.: Wave-structure interaction: simulation driven by quantitative imaging. Proc. R. Soc. A 460(2043), 729–755 (2004)
Sirovich, L.: Turbulence and the dynamics of coherent structures. Part I: Coherent structures. Q. Appl. Math. 45(3), 561–571 (1987)
Tadmor, E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989)
Tadmor, G., Lehmann, O., Noack, B., Morzyński, M.: Mean field representation of the natural and actuated cylinder wake. Phys. Fluids 22, 034 (2010)
Tadmor, G., Lehmann, O., Noack, B., Morzyński, M.: Mean field representation of the natural and actuated cylinder wake. Phys. Fluids 22, 102 (2010)
Tamellini, L., Le Maître, O., Nouy, A.: Model reduction based on proper generalized decomposition for the stochastic steady incompressible Navier-Stokes equations. Tech. Rep. 26, MOX — Modellistica e calcolo scientifico, Politecnico di Milano (2012)
Temam, R.: Navier-Stokes Equations. AMS Chelsea, Providence, Rhode Island (2001)
Terragni, F., Vega, J.M.: On the use of POD-based ROMs to analyze bifurcations in some dissipative systems. Physica D: Nonlinear Phenomena 241(17), 1393–1405 (2012). DOI 10.1016/j.physd.2012.04.009
Thomas, J., Hall, K., Dowell, E.: A harmonic balance approach for modeling nonlinear aeroelastic behavior of wings in transonic viscous flow. In: 44 th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference (2003)
Tonn, T., Urban, K., Volkwein, S.: Optimal control of parameter-dependent convectiondiffusion problems around rigid bodies. SIAM J. Sci. Comput. 32(3), 1237–1260 (2010)
Tu, J., Rowley, C.: An improved algorithm for balanced POD through an analytic treatment of impulse response tails. J. Comp. Phys. 231(16) (2012)
Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comp. (2013). In press
Veroy, K., Patera, A.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Meth. Fluids 47(8-9), 773–788 (2005)
Veroy, K., Prud’homme, C., Rovas, D.V., Patera, A.T.: A posteriori error bounds for reduced basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of the 16thAIAAComputational Fluid Dynamics Conference (2003). Paper 2003-3847
Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison. Comput. Meth. Appl. Mech. Engrg. 237-240, 10–26 (2012)
Weller, J., Lombardi, E., Bergmann, M., Iollo, A.: Numerical methods for low-order modeling of fluid flows based on POD. Int. J. Numer. Methods Fluids 63(2), 249–268 (2010)
Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)
Yano, M.: A space-time Petrov-Galerkin certified reduced basis method: application to the Boussinesq equations. Submitted to SIAM J. Scientific Computing (revised, 2013). Preprint available at augustine.mit.edu
Yano, M., Patera, A.T.: A space-time variational approach to hydrodynamic stability theory. Proceedings of Royal Society A, 469(2155), article 2013 0036 (2013)
Yano, M., Patera, A.T., Urban, K.: A space-time certified reduced basis method for Burgers’ equation (2013). Preprint available at augustine.mit.edu
Zhou, K., Salomon, G., Wu, E.: Balanced realization and model reduction for unstable systems. Int. J. Robust Nonlinear Control 9(3), 183–198 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Lassila, T., Manzoni, A., Quarteroni, A., Rozza, G. (2014). Model Order Reduction in Fluid Dynamics: Challenges and Perspectives. In: Quarteroni, A., Rozza, G. (eds) Reduced Order Methods for Modeling and Computational Reduction. MS&A - Modeling, Simulation and Applications, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-02090-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-02090-7_9
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02089-1
Online ISBN: 978-3-319-02090-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)