Skip to main content

New Blind Free-Band Detectors Exploiting Cyclic Autocorrelation Function Sparsity

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

In this chapter, we will firstly show that the Cyclic Autocorrelation Function (CAF) of a lineary modulated signal is a sparse function in the cyclic frequency domain. Then using this property we propose a new CAF estimator, using compressed sensing technique with the Orthogonal Matching Pursuit (OMP) algorithm. This new proposed estimator outperforms the classic estimator used in [1] under the same conditions, using the same number of samples. Furthermore, since our estimator does not need any information, we claim that it is a blind estimator whereas the estimator of [1] is clearly not blind because it needs the knowledge of the cyclic frequency. Many cases will be analysed: with and without the impact of a propagation channel at the reception. Using this new CAF estimator we propose two blind free bands detectors in the second part of this chapter. The first one is a soft version of the algorithm proposed in [2], that assumes that two estimated CAF of two successive packets of samples, should have close cyclic frequencies. The second one [3] uses Symmetry Property of the Second Order Cyclic Autocorrelation. Both methods outperform the cyclostationnarity detector of Dantawate-Giannakis of [1]. The second method outperforms the first one. Finally we study the complexity of the new proposed detectors and compare it to the complexity of [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dandawate, A.V., Giannakis, G.B.: Statistical tests for presence of cyslostationarity. IEEE Trans. Inf. Theory 42, 2355–2369 (1994)

    Google Scholar 

  2. Khalaf, Z., Nafkha, A., Palicot, J.: Blind Spectrum Detector for Cognitive Radio Using Compressed Sensing. IEEE GLOBECOM, Houston (2011)

    Google Scholar 

  3. Khalaf, Z., Nafkha, A., and Palicot, J.: Blind spectrum detector for cognitive radio using compressed sensing and symmetry property of the second order cyclic autocorrelation. In: 7th International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM), Stockholm, Sweden, 18–20 June 2012

    Google Scholar 

  4. Axell, E., Leus, G., Larsson, E.G., Poor, H.V.: Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Sig. Process. Mag. 29, 101–116 (2012)

    Google Scholar 

  5. Mitola, J.: Cognitive radio: an integrated agent architecture for software defined radio. Ph.D. thesis, Royal Institute of Technology (2000)

    Google Scholar 

  6. Zeng, Y., et al.: A review on spectrum sensing for cognitive radio: challenges and solutions. EURASIP J. Adv. Sig. Process. 2010, 1–15. Hindawi Publishing Corp., New York (2010)

    Google Scholar 

  7. Federal Communications Commission (FCC): Spectrum policy task force, ET Docket No. 02–135, Nov 2002

    Google Scholar 

  8. Palicot, J. (Surpvised by): De la radio logicielle à la radio intelligente, Collection Télécom, Lavoisier Librairie (2010)

    Google Scholar 

  9. Bic, J.C., Duponteil, D., Imbeaux, J.C.: Element de communications numériques. Dunod, Paris (1986)

    Google Scholar 

  10. Gardner, W.A.: Statistical Spectral Analysis: A Nonprobabilistic Theory. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  11. Giannakis, G.B.: Cyclostationary signal analysis. In: Madisetti, V.K., Williams D. (eds.) Statistical Signal Processing Section of Digital Signal Processing Handbook. CRC Press, Boca Raton(1999) (Chap. 17)

    Google Scholar 

  12. Mallat, S., Zhang, Z.: Matching pursuit in a time-frequency dictionary. Trans. Sig. Process. 41, 3397–3415 (1993)

    Google Scholar 

  13. Lu, L., Wu, H.A.: Novel robust detection algorithm for spectrum sensing. IEEE J. Sel. Areas Commun. 29, 305–315 (2011)

    Google Scholar 

  14. Doostan, A., Owhadi, H.: A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)

    Google Scholar 

  15. Khalaf, Z.: Contributions à l’étude de détection des bandes libres dans le contexte de la radio intelligente. Ph.D. thesis, Supélec, Feb 2013

    Google Scholar 

  16. Khalaf, Z., Palicot, J.: Exploiting Sparse Property of the Cyclic Autocorrelation Function for Cyclostationary Process Compressed Sensing. WSR, Karlsruhe (2012)

    Google Scholar 

  17. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(11), 2845–2862

    Google Scholar 

  18. Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. I.T. 49(12), 3320–3325 (2003)

    Google Scholar 

  19. Fuchs, J.J.: More on sparse representations in arbitrary bases. IEEE Trans. I.T. 50(6), 1341–1344 (2004). In: 13th IFAC SYSID, 1357–1362, Rotterdam, 2003

    Google Scholar 

  20. Fuchs, J.J.: Sparse representations and realization theory. Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, July 2006

    Google Scholar 

  21. Fuchs, J.J.: Identification of real sinusoids in noise, the Global Matched Filter approach. In: 14th Ifac-Ifors Symposium on Identification and System Parameter Estimation, pp. 1127–1132, Saint-Malo, France, July 2009

    Google Scholar 

  22. Davis, G., Mallat, S., Avellaneda, M.: Greedy adaptive approximation. J. Constr. Approx. 13, 57–98 (1997)

    MATH  MathSciNet  Google Scholar 

  23. Mallat, S.: A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, San Diego (2009)

    Google Scholar 

  24. William, A.: Gardner, Statistical Spectral Analysis: A Non-Probabilistic Theory. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  25. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. (Wiley Online Library) 59(7), 907–934 (July 2006)

    Google Scholar 

  26. J-L Lacoume, Amblard, P.-O., Comon, P.: Statistiques d’ordres supérieurs pour le Traitement du Signal. MASSON, Paris (1997)

    Google Scholar 

  27. Fuchs, J.J.: Sparse representations and realization theory. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan, July 2006

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad Khalaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khalaf, Z., Palicot, J. (2014). New Blind Free-Band Detectors Exploiting Cyclic Autocorrelation Function Sparsity. In: Di Benedetto, MG., Bader, F. (eds) Cognitive Communication and Cooperative HetNet Coexistence. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-01402-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01402-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01401-2

  • Online ISBN: 978-3-319-01402-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics