Skip to main content

Plant Heat-Shock Protein-Based Self-Adjuvanted Immunogens

  • Chapter
  • First Online:
Molecular Vaccines
  • 1805 Accesses

Abstract

Subunit vaccines are based on isolated pure or semi-pure microorganism components (antigens). As compared to traditional formulations based on whole pathogens (killed or attenuated), these vaccines are safer even if unable per se to boost immune responses unless supplemented by adjuvants. Nowadays, thanks to the development of high-performance gene engineering and biochemical procedures, subunit-based vaccines emerging on the market are formulated with recombinant antigens produced in bacterial, yeast or animal cells. Plant-based expression systems are turning out to be very attractive “biofactories” of recombinant antigens as well, since they ensure low-cost, rapid and easy manufacturing scaling up and intrinsic biosafety of the final product.

Nevertheless, also plant-produced recombinant antigens are per se poorly immunogenic. A few attempts to set-up strategies to obtain self-adjuvanted immunogens from plants have been made. This chapter will be mainly focused on the possibility to exploit to this aim plant heat-shock proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Germain, R.N.: Vaccines and the future of human immunology. Immunity 33, 441–450 (2010)

    Article  PubMed  CAS  Google Scholar 

  2. Plotkin, S.A., Plotkin, S.L.: The development of vaccines: how the past let to the future. Nat. Rev. Immunol. 9, 889–893 (2011)

    Article  CAS  Google Scholar 

  3. Ulmer, J.B., Valley, U., Rappuoli, R.: Vaccine manufacturing: challenges and solutions. Nat. Biotechnol. 24, 1377–1383 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. Streatfield, S.J.: Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol. J. 5, 2–15 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. Lico, C., et al.: Plant-based vaccine delivery strategy. In: Baschieri, S. (ed.) Innovation in Vaccinology. From Design, Through to delivery and Testing. Springer, New York (2012)

    Google Scholar 

  6. Fischer, R., et al.: Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 152–158 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. Newell, C.A.: Plant transformation technology. Mol. Biotechnol. 16, 53–65 (2000)

    Article  PubMed  CAS  Google Scholar 

  8. Lee, L.-Y., Gelvin, S.B.: T-DNA binary vectors and systems. Plant Physiol. 146, 325–332 (2008)

    Article  PubMed  CAS  Google Scholar 

  9. Bock, R., Khan, M.S.: Taming plastids for a green future. Trends Biotechnol. 22, 311–318 (2004)

    Article  PubMed  CAS  Google Scholar 

  10. Meyers, B., et al.: Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Biotechnol. Adv. 28, 747–756 (2010)

    Article  PubMed  CAS  Google Scholar 

  11. Bock, R.: Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr. Opin. Biotechnol. 18, 100–106 (2007)

    Article  PubMed  CAS  Google Scholar 

  12. Komarova, T.V., et al.: Transient expression systems for plant-derived biopharmaceuticals. Expert Rev. Vaccines 9, 859–876 (2010)

    Article  PubMed  CAS  Google Scholar 

  13. Sheludko, Y.V.: Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants. Recent Pat. Biotechnol. 2, 198–208 (2008)

    Article  PubMed  CAS  Google Scholar 

  14. Pogue, G.P., et al.: Making an ally from an enemy: plant virology and the new agriculture. Annu. Rev. Phytopathol. 40, 45–74 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. Lico, C., Chen, Q., Santi, L.: Viral vectors for production of recombinant proteins in plants. J. Cell. Physiol. 216, 366–377 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. Rybicki, E.P.: Plant-made vaccines for humans and animals. Plant Biotechnol. J. 8, 620–637 (2010)

    Article  PubMed  CAS  Google Scholar 

  17. Walmsley, A.M., Arntzen, C.J.: Plants for delivery of edible vaccines. Curr. Opin. Biotechnol. 11, 126–129 (2000)

    Article  PubMed  CAS  Google Scholar 

  18. Tacket, C.O.: Plant-based oral vaccines: results of human trials. Curr. Top. Microbiol. Immunol. 332, 103–117 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. Butaye, K.M.J., et al.: Approaches to minimize variation of transgene expression in plants. Mol. Breed. 16, 79–91 (2005)

    Article  Google Scholar 

  20. Penney, C.A., et al.: Plant-made vaccines in support of the Millennium Development Goals. Plant Cell Rep. 30, 789–798 (2011)

    Article  PubMed  CAS  Google Scholar 

  21. Wilken, L.R., Nikolov, Z.L.: Recovery and purification of plant-made recombinant proteins. Biotechnol. Adv. 30, 419–433 (2012)

    Article  PubMed  CAS  Google Scholar 

  22. Santi, L., Huang, Z., Mason, H.: Virus-like particles production in green plants. Methods 40, 66–76 (2006)

    Article  PubMed  CAS  Google Scholar 

  23. D’Aoust, M.A., et al.: Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol. J. 6, 930–940 (2008)

    Article  PubMed  Google Scholar 

  24. D’Aoust, M.A., et al.: The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J. 8, 607–619 (2010)

    Article  PubMed  Google Scholar 

  25. Plotkin, S.A.: Vaccines: the fourth century. Clin. Vaccine Immunol. 16, 1709–1719 (2009)

    Article  PubMed  CAS  Google Scholar 

  26. Guy, B.: The perfect mix: recent progress in adjuvant research. Nat. Rev. Microbiol. 5, 505–517 (2007)

    Article  PubMed  CAS  Google Scholar 

  27. Bachmann, M.F., Jennings, G.T.: Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010)

    Article  PubMed  CAS  Google Scholar 

  28. Lico, C., et al.: Plant-produced potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice. Vaccine 27, 5069–5076 (2009)

    Article  PubMed  CAS  Google Scholar 

  29. Capuano, F., et al.: LC-MS/MS methods for absolute quantification and identification of proteins associated with chimeric plant oil bodies. Anal. Chem. 83, 9267–9272 (2011)

    Article  PubMed  CAS  Google Scholar 

  30. Chargelegue, D., et al.: Highly immunogenic and protective recombinant vaccine candidate expressed in transgenic plants. Infect. Immun. 73, 5915–5922 (2005)

    Article  PubMed  CAS  Google Scholar 

  31. Feder, M.E., Hoffmann, G.E.: Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999)

    Article  PubMed  CAS  Google Scholar 

  32. Lindquist, S., Craig, E.A.: The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988)

    Article  PubMed  CAS  Google Scholar 

  33. Christis, C., Lubsen, N.H., Braakman, I.: Protein folding includes oligomerization – examples from the endoplasmic reticulum and cytosol. FEBS J. 275, 4700–4727 (2008)

    Article  PubMed  CAS  Google Scholar 

  34. Rutherford, S.L.: Between genotype and phenotype: protein chaperones and evolvability. Nat. Rev. Genet. 4, 263–274 (2003)

    Article  PubMed  CAS  Google Scholar 

  35. Wegele, H., Muller, L., Buchner, J.: Hsp70 and Hsp90 – a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol. 151, 1–44 (2004)

    Article  PubMed  CAS  Google Scholar 

  36. Pearl, L.H., Prodromou, C.: Structure and mechanism of the HSP90 molecular chaperone machinery. Annu. Rev. Biochem. 75, 271–294 (2006)

    Article  PubMed  CAS  Google Scholar 

  37. Morano, K.A.: New tricks for an old dog. The evolving world of Hsp70. Ann. N. Y. Acad. Sci. 1113, 1–14 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. Zhu, X., et al.: Structural analysis of substrate binding by the molecular chaperone DnaK. Science 72, 1606–1614 (1996)

    Article  Google Scholar 

  39. Worrall, L.J., Walkinshaw, M.D.: Crystal structure of the C-terminal three-helix bundle subdomain of C. elegans HSP70. Biochem. Biophys. Res. Commun. 357, 105–110 (2007)

    Article  PubMed  CAS  Google Scholar 

  40. Jiang, J., Lafer, E.M., Sousa, R.: Crystallization of a functionally intact HSC70 chaperone. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62, 39–43 (2006)

    Article  PubMed  CAS  Google Scholar 

  41. Rudiger, S., Buchberger, A., Bukau, B.: Interaction of Hsp70 chaperones with substrates. Nat. Struct. Biol. 4, 342–349 (1997)

    Article  PubMed  CAS  Google Scholar 

  42. Schlecht, R., et al.: Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat. Struct. Mol. Biol. 18, 345–351 (2011)

    Article  PubMed  CAS  Google Scholar 

  43. Nicolai, A., et al.: Human inducible Hsp70: structures, dynamics, and interdomain communication from all-atom molecular dynamics simulations. J. Chem. Theory Comput. 6, 2501–2519 (2010)

    Article  CAS  Google Scholar 

  44. Srivastava, P.K.: Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2, 185–194 (2002)

    Article  PubMed  CAS  Google Scholar 

  45. Srivastava, P.K., Deleo, A.B., Old, L.J.: Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc. Natl. Acad. Sci. U. S. A. 83, 3407–3411 (1986)

    Article  PubMed  CAS  Google Scholar 

  46. Murshid, A., Gong, J., Calderwood, S.K.: Heat-shock proteins in cancer vaccines: agents of antigen cross-presentation. Expert Rev. Vaccines 7, 1019–1030 (2008)

    Article  PubMed  CAS  Google Scholar 

  47. Srivastava, R.M., Khar, A.: Dendritic cells and their receptors in antitumor immune response. Curr. Mol. Med. 6, 708–724 (2009)

    Article  Google Scholar 

  48. Nieland, T.J.F., et al.: Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc. Natl. Acad. Sci. U. S. A. 93, 6135–6139 (1996)

    Article  PubMed  CAS  Google Scholar 

  49. Arnold, D., et al.: Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J. Exp. Med. 182, 885–889 (1995)

    Article  PubMed  CAS  Google Scholar 

  50. Blachere, N.E., et al.: Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med. 186, 1315–1323 (1997)

    Article  PubMed  CAS  Google Scholar 

  51. MacAry, P.A., et al.: HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity 20, 95–106 (2004)

    Article  PubMed  CAS  Google Scholar 

  52. Javid, B., MacAry, P.A., Lehner, P.J.: Structure and function: heat shock proteins and adaptive immunity. J. Immunol. 179, 2035–2040 (2007)

    PubMed  CAS  Google Scholar 

  53. Basu, S., et al.: CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14, 303–313 (2001)

    Article  PubMed  CAS  Google Scholar 

  54. Basu, S., Matsutake, T.: Heat shock protein-antigen presenting cell interactions. Methods 32, 38–41 (2004)

    Article  PubMed  CAS  Google Scholar 

  55. Asea, A., et al.: HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6, 435–442 (2000)

    Article  PubMed  CAS  Google Scholar 

  56. Kumaraguru, U., et al.: Antigenic peptides complexed to phylogenically diverse Hsp70s induce differential immune responses. Cell Stress Chaperones 8, 134–143 (2003)

    Article  PubMed  CAS  Google Scholar 

  57. Buriani, G., et al.: Plant heat shock protein 70 as carrier for immunization against a plant-expressed reporter antigen. Transgenic Res. 20, 331–344 (2011)

    Article  PubMed  CAS  Google Scholar 

  58. Sugio, A., et al.: The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21, 642–654 (2009)

    Article  PubMed  CAS  Google Scholar 

  59. Aparicio, F., et al.: Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant cytosol. Plant Physiol. 138, 529–536 (2005)

    Article  PubMed  CAS  Google Scholar 

  60. Lee, J.H., Schöffl, F.: An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Mol. Gen. Genet. 252, 11–19 (1996)

    PubMed  CAS  Google Scholar 

  61. Kadota, Y., Shirasu, K.: The HSP90 complex of plants. Biochim. Biophys. Acta 1823, 689–697 (2012)

    Article  PubMed  CAS  Google Scholar 

  62. Corigliano, M.G., et al.: Plant Hsp90 proteins interact with B-cells and stimulate their proliferation. PLoS One 6, e21231 (2011)

    Article  PubMed  CAS  Google Scholar 

  63. Buriani, G., et al.: Heat-shock protein 70 from plant biofactories of recombinant antigens activate multiepitope-targeted immune responses. Plant Biotechnol. J. 10, 363–371 (2012)

    Article  PubMed  CAS  Google Scholar 

  64. Townsend, A.R., et al.: The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44, 959–968 (1986)

    Article  PubMed  CAS  Google Scholar 

  65. Oukka, M., et al.: Protection against lethal viral infection by vaccination with non immunodominant peptides. J. Immunol. 157, 3039–3045 (1996)

    PubMed  CAS  Google Scholar 

  66. Doherty, P.C., Kelso, A.: Toward a broadly protective influenza vaccine. J. Clin. Invest. 118, 3273–3275 (2008)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selene Baschieri PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baschieri, S. (2014). Plant Heat-Shock Protein-Based Self-Adjuvanted Immunogens. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_9

Download citation

Publish with us

Policies and ethics