Skip to main content

Euclid: Doing and Showing

  • Chapter
  • First Online:
Axiomatic Method and Category Theory

Part of the book series: Synthese Library ((SYLI,volume 364))

  • 2379 Accesses

Abstract

Reading older mathematical texts always involves a hermeneutical dilemma: in order to make sense of the mathematical content of a given old text one wants to interpret it in modern terms; in order to see the difference between the modern mathematical thinking and older ways of mathematical thinking one wants to avoid anachronisms and understand the old text in its own terms (Unguru 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Being between Scylla and Charybdis is an idiom deriving from Greek mythology. Scylla and Charybdis were mythical sea monsters noted by Homer. Scylla was rationalized as a rock shoal (described as a six-headed sea monster) on the Italian side of the strait and Charybdis was a whirlpool off the coast of Sicily. They were regarded as a sea hazard located close enough to each other that they posed an inescapable threat to passing sailors; avoiding Charybdis meant passing too close to Scylla and vice versa. (after WikipediA)

  2. 2.

    See the full quote from Friedman in the end of Sect. 3.5.

  3. 3.

    As far as mutual influences are concerned two things are certain: (i) Proclus read Aristotle and (ii) Aristotle had at least a basic knowledge of the mathematical tradition, on which Euclid later elaborated in his Elements (as Aristotle’s mathematical examples clearly show Heath 1949). It remains unclear whether Aristotle’s work could influence Euclid. In my view this is unlikely. However Aristotle’s logic certainly played an important role in later interpretations and revisions of Euclid’s Elements. I leave this interesting issue outside of the scope of this book.

  4. 4.

    The difference AB of two figures A, B is a figure obtained through “cutting” B out of A; the sum A + B is the result of concatenation of A and B. These operations are not defined up to congruence of figures (for there are, generally speaking, many possible ways, in which one may cut out one figure from another) but, according to Euclid’s Axioms, these operations are defined up to Euclid’s equality. This shows that Euclid’s equality is weaker than congruence: according to Axiom 4 congruent objects are equal but, generally, the converse does not hold. In the case of (plane) figures Euclid’s equality is equivalent to the equality (in the modern sense) of their air.

  5. 5.

    Here are some quotes:

    By first principles of proof [as distinguished from first principles in general] I mean the common opinions on which all men base their demonstrations, e.g. that one of two contradictories must be true, that it is impossible for the same thing both be and not to be, and all other propositions of this kind. (Met. 996b27-32, Heath’s translation, corrected)

    Here Aristotle refers to a logical principle as “common opinion”. In the next quote he compares mathematical and logical axioms:

    We have now to say whether it is up to the same science or to different sciences to inquire into what in mathematics is called axioms and into [the general issue of] essence. Clearly the inquiry into these things is up to the same science, namely, to the science of the philosopher. For axioms hold of everything that [there] is but not of some particular genus apart from others. Everyone makes use of them because they concern being qua being, and each genus is. But men use them just so far as is sufficient for their purpose, that is, within the limits of the genus relevant to their proofs. Since axioms clearly hold for all things qua being (for being is what all things share in common) one who studies being qua being also inquires into the axioms. This is why one who observes things partly [=who inquires into a special domain] like a geometer or a arithmetician never tries to say whether the axioms are true or false. (Met. 1005a19-28, my translation)

    Here is the last quote where Aristotle refers to Axiom 3 explicitly:

    Since the mathematician too uses common [axioms] only on the case-by-case basis, it must be the business of the first philosophy to investigate their fundamentals. For that, when equals are subtracted from equals, the remainders are equal is common to all quantities, but mathematics singles out and investigates some portion of its proper matter, as e.g. lines or angles or numbers, or some other sort of quantity, not however qua being, but as […] continuous. (Met. 1061b, my translation)

    The “science of philosopher” otherwise called the “first philosophy” is Aristotle’s logic, which in his understanding is closely related to (if not indistinguishable from) what we call today ontology. After Alexandrian librarians we call today the relevant collection of Aristotle’s texts by the name of metaphysics and also use this name for a relevant philosophical discipline.

  6. 6.

    Although the choice of letters in Euclid’s notation is arbitrary the system of this notation is not. This traditional geometrical notation has a relatively stable and rather sophisticated syntax, which I briefly describe in what follows.

  7. 7.

    I reproduce here Fitzpatrick’s footnote about Euclid’s expression “let it be postulated”:

    The Greek present perfect tense indicates a past action with present significance. Hence, the 3rd-person present perfect imperative Hitesthw could be translated as “let it be postulated”, in the sense “let it stand as postulated”, but not “let the postulate be now brought forward”. The literal translation “let it have been postulated” sounds awkward in English, but more accurately captures the meaning of the Greek.

  8. 8.

    Remind that the concepts of infinite straight line and infinite half-line (ray) are absent from Euclid’s geometry; thus the result of OP2 is always a finite straight segment. However the result of OP2 is obviously not fully determined by its single operand. This shows that OP2 doesn’t really fit the today’s usual notion of algebraic operation.

  9. 9.

    Problem 1.1 involves a difficulty that has been widely discussed in the literature: Euclid does not provide any principle that may allow him to construct a point of intersection of the two circles involved into the construction of this Problem. This flaw is usually described as a logical flow. In my view it is more appropriate to describe this flow as properlygeometrical and fill the gap in the reasoning by the following additional postulate (rather than an additional axiom):

    Let it have been postulated to produce a point of intersection of two circles with a common radius.

    Even if this additional postulates is introduced here purely ad hoc, the way in which it is introduced gives an idea of how Euclid’s Postulates could emerge in the real history.

Bibliography

  • G.J. Allman, Greek Geometry from Thales to Euclid (Hodges, Figgis, Dublin, 1889)

    Google Scholar 

  • D.W. Anderson, Fibrations and geometric realizations. Bull. Am. Math. Soc. 84, 765–786 (1978)

    Article  Google Scholar 

  • K. Andersen, The Geometry of an Art. The History of the Mathematical Theory of Perspective from Alberti to Monge (Springer, New York/London, 2007)

    Google Scholar 

  • A. Arnauld, Nouveaux Eléments de Géométrie (Guillaume Desprez, Paris, 1683)

    Google Scholar 

  • S. Awodey, An answer to G. Hellman’s question does category theory provide a framework for mathematical structuralism? Philos. Math. 12(3), 54–64 (2004)

    Article  Google Scholar 

  • S. Awodey, Type theory and homotopy (2010). arXiv:1010.1810v1 (math.CT)

    Google Scholar 

  • S. Awodey, A. Bauer, Introduction to Categorical Logics (draft 2009) (2009), http://www.docstoc.com/docs/12818008/Introduction-to-Categorical-Logics

  • S. Awodey, M. Warren, Homotopy theoretic models of identity types. Math. Proc. Camb. Philos. Soc. 74, 45–55 (2009). arXiv:0709.0248v1 (math.LO)

    Google Scholar 

  • J. Baez, Quantum quandaries: a category-theoretic perspective (2004). arXiv:quant-ph/0404040

    Google Scholar 

  • J. Baez, J. Dolan, Categorification, in Higher Category Theory, ed. by E. Getzler, M.M. Kapranov. Contemporary Mathematics, vol. 230 (American Mathematical Society, Providence, 1998), pp. 1–36. arXiv:math.QA/9802029

    Google Scholar 

  • M. Balaguer, Platonism and Anti-Platonism in Mathematics (Oxford University Press, New York, 1998)

    Google Scholar 

  • Y. Bar-Hillel, A. Fraenkel, A. Levy, Foundations of Set Theory (North-Holland, Amsterdam, 1973)

    Google Scholar 

  • I. Barrow, in Geometrical Lectures, ed. by J.M. Child (Dover, Mineola, 2006)

    Google Scholar 

  • J. Bell, The development of categorical logic, in The Handbook of Philosophical Logic, vol. 12, ed. by D.M. Gabbay (Kluwer, Dordrecht/Boston, 2005)

    Google Scholar 

  • J. Bénabou, Introduction to bicategories, in Reports of the Midwest Category Seminar, ed. by J. Bénabou et al. Lecture Notes in Mathematics, vol. 47 (Springer, Berlin/New York, 1967), pp. 1–77

    Google Scholar 

  • J. Bénabou, Fibred categories and the foundation of naive category theory. J. Symb. Log. 50(1), 10–37 (1985)

    Article  Google Scholar 

  • P. Benacerraf, What numbers could not be. Philos. Rev. 74, 47–73 (1965)

    Article  Google Scholar 

  • P. Bernays, Axiomatic Set Theory (North-Holland, Amsterdam, 1958)

    Google Scholar 

  • D. Bonnay, Logicality and invariance. Bull. Symb. Log. 14(1), 29–68 (2006)

    Article  Google Scholar 

  • R. Bonola, Non-Euclidean Geometry (Dover, New York, 1955)

    Google Scholar 

  • G.A. Borelli, Euclides Restitutus (Pisa, 1658)

    Google Scholar 

  • N. Bourbaki, Éléments de la théorie des ensembles. Prolégomènes sur la notion de théorie mathématique (état 1). Unpublished manuscript available at online Bourbaki Archive at http://mathdoc.emath.fr/archives-bourbaki/PDF/050_iecnr_059.pdf (1935–1939)

  • N. Bourbaki, Eléments de Mathématique, 10 vols (Hermann, Paris, 1939–1988)

    Google Scholar 

  • N. Bourbaki, Architecture of mathematics. Am. Math. Mon. 57(4), 221–232 (1950)

    Article  Google Scholar 

  • N. Bourbaki, Theory of Sets (Hermann, Paris, 1968)

    Google Scholar 

  • F.H. Bradley, Principles of Logic (Oxford University Press, London, 1922)

    Google Scholar 

  • N.G. Bruijn, On the roles of types in mathematics. Cahiers du Centre de Logique 8, 27–54 (1995)

    Google Scholar 

  • L. Brunschvicg, Les étapes de la philosophie mathématique (Alcan, Paris, 1912)

    Google Scholar 

  • F. Cajori, A History of Mathematical Notation (Open Court, Chicago, 1929)

    Google Scholar 

  • G. Cantor, Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen (Teubner, Leipzig, 1883a)

    Google Scholar 

  • G. Cantor, Über unendliche, lineare punktmannichfaltigkeiten. 5. fortsetzung. Math. Ann. 21, 545–591 (1883b)

    Article  Google Scholar 

  • G. Cantor, Beitraege zur begrundung der transfiniten mengenlehre. Math. Ann. 46, 481–512 (1885)

    Article  Google Scholar 

  • F. Cardone, J.R. Hindley, History of lambda-calculus and combinatory logic, in Handbook of the History of Logic, vol. 5, ed. by D.R. Gabbay, J. Woods (Elsevier/North Holland, Amsterdam/Boston/Heidelberg, 2009), pp. 723–817

    Google Scholar 

  • E. Cassirer, Kant und die moderne mathematik. Kant-Studien 12, 1–40 (1907)

    Article  Google Scholar 

  • E. Cassirer, Philosophie der symbolischen Formen (in zwei Banden) (Bruno Cassirer, Berlin, 1923–1925)

    Google Scholar 

  • P.J. Cohen, The independence of the continuum hypothesis. Proc. Natl. Acad. Sci. U.S.A. 50, 1143–1148 (1963)

    Article  Google Scholar 

  • L. Corry, The empiricist root of hilbert’s axiomatic approach, in Proof Theory: History and Philosophical Significance, ed. by V. Hendricks et al. Synthese Library, vol. 292 (Kluwer, Dordrecht/Boston, 2000), pp. 35–54

    Google Scholar 

  • L. Corry, Modern Algebra and the Rise of Mathematical Structures (Birkhäuser, Basel/Boston, 2004)

    Book  Google Scholar 

  • L. Corry, The origins of Hilbert’s axiomatic method, in The Genesis of General Relativity, Vol. 4 Theories of Gravitation in the Twilight of Classical Physics: The Promise of Mathematics and the Dream of a Unified Theory, ed. by J. Renn (Springer, New York, 2006), pp. 139–236

    Google Scholar 

  • E. Dean, J. Avigad, J. Mumma, A formal system for euclid’s elements. Rev. Symb. Log. 2(4), 700–768 (2009)

    Article  Google Scholar 

  • T.A. Debs, M.L.G. Redhead, Objectivity, Invariance, and Convention: Symmetry in Physical Science (Harvard University Press, Cambridge, Massachusetts, 2007)

    Google Scholar 

  • G. Deleuze, Différence et répétition (Presses universitaires de France, Paris, 1968)

    Google Scholar 

  • R. Descartes, La Géométrie (Guillaume Desprez, Paris, 1886)

    Google Scholar 

  • R. Descartes, La géométrie (Hermann, Paris, 2008)

    Google Scholar 

  • M. Detlefsen, Poincaré against logicians. Synthese90(3), 349–378 (1992)

    Article  Google Scholar 

  • H. Deutsch, Relative identity (entry in stanford encyclopedia of philosophy) (2002), http://plato.stanford.edu/entries/identity-relative/

  • F. Dosse, History of Structuralism, Vols. I (The Rising Sign, 1945–1966) and II (The Sign Sets, 1967-Present) (trans. by D. Glassman) (The University of Minnesota Press, Minneapolis, 1997)

    Google Scholar 

  • H.M. Edwards, The genesis of ideal theory. Arch. Hist. Exact Sci. 23, 321–378 (1980)

    Article  Google Scholar 

  • S. Eilenberg, S. MacLane, General theory of natural equivalences. Trans. Am. Math. Soc. 58(2), 231–294 (1945)

    Article  Google Scholar 

  • A. Einstein, Geometry and Experience, Ideas and Opinions, Bonanza Books, New York, p. 232–246 (1954)

    Google Scholar 

  • Euclid, The optics of Euclid (English trans. by H.E. Burton). J. Opt. Soc. Am. 35(5), 357–372 (1945)

    Google Scholar 

  • Euclid, Elements English trans. by (R. Fitzpatrick Ausitn, through lulu.com, 2011)

    Google Scholar 

  • Euclides, in Euclidis Opera Omnia, ed. by J.L. Heiberg (Teubner, Lipsiae, 1883–1886)

    Google Scholar 

  • S. Feferman, Categorical foundations and foundations of category theory, in Logic, Foundations of Mathematics and the Computability Theory, ed. by R. Butts, J. Hintikka (Reidel, Dordrecht/Boston, 1977), pp. 149–169

    Chapter  Google Scholar 

  • J. Ferreiros, Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Science Networks. Historical Studies, vol. 23 (Birkhauser, Basel/Boston, 1999)

    Google Scholar 

  • R. Feys, H. Curry, W. Craig, Combinatory Logic, Vol. 1 (North Holland, Amsterdam, 1958)

    Google Scholar 

  • J.N. Findlay, Plato: The Written and Unwritten Doctrines (Routledge, London, 1974)

    Google Scholar 

  • M. Fitting, Intensional logic (entry in stanford encyclopedia of philosophy) (2006–2011), http://plato.stanford.edu/entries/logic-intensional/

  • B.C. Fraassen, The Scientific Image (Clarendon, Oxford, 1980)

    Book  Google Scholar 

  • G. Frege, Die Grundlagen der Arithmetik (W. Koebner, Breslau, 1884)

    Google Scholar 

  • G. Frege, Über sinn und bedeutung. Zeitschrift für Philosophie und philosophische Kritik 100, 25–50 (1892)

    Google Scholar 

  • G. Frege, Grundgesetze der Arithmetik, Bd. II (Verlag Hermann Pohle, Jena, 1903)

    Google Scholar 

  • G. Frege, On sense and reference, in Translations from the Philosophical Writings of Gottlob Frege, ed. by P. Geach, M. Black. (Basil Blackwell, Oxford, 1952), pp. 56–78

    Google Scholar 

  • G. Frege, Grundgesetze der Arithmetik (Hildesheim, Olms, 1962)

    Google Scholar 

  • G. Frege, The Basic Laws of Arithmetic. Exposition of the System (translated and edited, with an introduction, by M. Furth) (California Press, Berkeley, 1964)

    Google Scholar 

  • G. Frege, On the Foundations of Geometry and Formal Theories of Arithmetic (Yale University Press, New Haven, 1971)

    Google Scholar 

  • S. French, Quantum physics and the identity of indiscernibles. Br. J. Philos. Sci. 39, 233–246 (1988)

    Article  Google Scholar 

  • S. French, D. Krause, Identity in Physics: A Historical, Philosophical, and Formal Analysis (Oxford University Press, Oxford/New York, 2006)

    Book  Google Scholar 

  • H. Freudental, The main trends in the foundations of geometry in the 19th century, in Proceedings of the 1960 International Congress on Logic, Methodology and Philosophy of Science, Standford 1962, (1960), pp. 613–621

    Google Scholar 

  • P. Freyd, Aspects of topoi. Bull. Aust. Math. Soc. 7, 1–76 (1972)

    Article  Google Scholar 

  • M. Friedman, Kant and the Exact Sciences (Harvard University Press, Cambridge, 1992)

    Google Scholar 

  • D.M. Gabbay (ed.), What Is a Logical System? (Oxford University Press, New York, 1994)

    Google Scholar 

  • D.M. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic (Springer, Berlin/New York, 2001)

    Google Scholar 

  • G. Galilei, [Discourses on the] Two New Sciences (trans. S. Drake) (Wall and Emerson, Toronto, 1974)

    Google Scholar 

  • C.F. Gauss, Disquisitiones generales circa superficies curvas (Dieterich, Gottinga, 1828)

    Google Scholar 

  • P.T. Geach, Logic Matters (Basil Blackwell, Oxford, 1972)

    Google Scholar 

  • S.I. Gelfand, Yu.I. Manin, Methods of Homological Algebra (Springer, Berlin/New York, 2003)

    Book  Google Scholar 

  • G. Gentzen, über die existenz unabhängiger axiomensysteme zu unendlichen satzsystemen. Math. Ann. 107, 329–350 (1932)

    Article  Google Scholar 

  • G. Gentzen, Untersuchungen über das logische schliessen i. Math. Z. 39(2), 176–210 (1934)

    Google Scholar 

  • G. Gentzen, Untersuchungen über das logische schlieβen ii. Math. Z. 39(3), 405–431 (1935)

    Article  Google Scholar 

  • K. Gödel, The consistency of the axiom of choice and of the generalized continuum hypothesis. Proc. Natl. Acad. Sci. U.S.A. 24, 556–557 (1938)

    Article  Google Scholar 

  • M. Grandis, Directed Homotopy Theory (2001). arXiv:math.AT/0111048

    Google Scholar 

  • J.G. Granstrom, Treatise on Intuitionistic Type Theory (Springer, Dordrecht, 2011)

    Book  Google Scholar 

  • I. Grattan-Guinness, An unpublished paper by georg cantor: Principien einer theorie der ordnungstypen. Acta Math. 124, 65–107 (1970)

    Article  Google Scholar 

  • J. Gray (ed.), The Symbolic Universe: Geometry and Physics 1890–1930 (Oxford University Press, Oxford/New York, 1999)

    Google Scholar 

  • M.J. Greenberg, Euclidean and Non-Euclidean Geometries (W.H. Freeman, San Francisco, 1993)

    Google Scholar 

  • T.L. Heath, The Thirteen Books of Euclid’s Elements Translated from the Text of Heiberg with Introduction and Commentary (Cambridge University Press, Cambridge, 1926)

    Google Scholar 

  • T.L. Heath, Mathematics in Aristotle (Oxford University Press, Oxford, 1949)

    Google Scholar 

  • T.L. Heath, A History of Greek Mathematics (Dover, New York, 1981). (First published 1921)

    Google Scholar 

  • T.L. Heath, A Manual of Greek Mathematics (Dover, Mineola, 2003). (First published 1931)

    Google Scholar 

  • G.W.F. Hegel, in Science of Logic, trans. by A.V. Miller (George Allen and Unwin, London, 1969)

    Google Scholar 

  • G. Heinzmann (ed.), Poincaré, Russell, Zermelo et Peano. Textes de la discussion (1906–1912) sur les fondements des mathématiques: des antinomies à la prédicativité (Blanchard, Paris, 1986)

    Google Scholar 

  • J. Heis, The fact of modern mathematics: geometry, logic, and concept formation in Kant and Cassirer, Ph.D. thesis, University of Pittsburgh, 2007

    Google Scholar 

  • G. Hellman, Three varieties of mathematical structuralism. Philos. Math. 2(9), 184–211 (2001)

    Article  Google Scholar 

  • G. Hellman, Does category theory provide a framework for mathematical structuralism? Philos. Math. 2(11), 129–157 (2003)

    Article  Google Scholar 

  • G. Hellman, Structuralism, mathematical, in Encyclopedia of Philosophy, vol. 9, 2nd edn., ed. by D.M. Borchert (Macmillan, Detroit, 2006), pp. 270–273

    Google Scholar 

  • A. Heyting, Intuitionism: An Introduction (North-Holland, Amsterdam, 1956)

    Google Scholar 

  • D. Hilbert, Grundlagen der Geometrie (B.G. Teubner, Leipzig, 1899)

    Google Scholar 

  • D. Hilbert, On the concept of number, in From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. 2, ed. by W. Ewald (Clarendon, Oxford, 1996), pp. 1089–1096

    Google Scholar 

  • D. Hilbert, Mathematical problems. Bull. Am. Math. Soc. 8(10), 437–479 (1902)

    Article  Google Scholar 

  • D. Hilbert, Grundlagen der Geometrie (zweite Auflage) (Teubner, Leipzig, 1903)

    Google Scholar 

  • D. Hilbert, Axiomatic thought, in From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. 2, ed. by W. Ewald (Clarendon, Oxford, 1996), pp. 1105–1115

    Google Scholar 

  • D. Hilbert, The new grounding of mathematics, in From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. 2, ed. by W. Ewald (Clarendon, Oxford, 1996), pp. 1115–1134

    Google Scholar 

  • D. Hilbert, Foundations of mathematics, in From Frege to Gödel: A Source Book in the Mathematical Logic, vol. 2, ed. by J. van Heijenoort (Harvard University Press, Cambridge, Massachusetts, 1967), pp. 464–480

    Google Scholar 

  • D. Hilbert, The Foundations of Geometry (Open Court, LaiSalle, 1950)

    Google Scholar 

  • D. Hilbert, W. Ackermann, Grundzüge der theoretischen Logik (Springer, Berlin/Heidelberg, 1928)

    Google Scholar 

  • D. Hilbert, W. Ackermann, Principles of Mathematical Logic (Chelsea, New York, 1950)

    Google Scholar 

  • D. Hilbert, P. Bernays, Grundlagen der Mathematik (in 2 vols) (Springer, Berlin, 1934–1939)

    Google Scholar 

  • D. Hilbert, P. Bernays, Foundations of Mathematics 1. Commented translation by C.-P. Wirth (College publications, London, 2011)

    Google Scholar 

  • D. Hilbert, S. Chon-Vossen, Anschauliche Geometrie (Springer, Berlin, 1932)

    Book  Google Scholar 

  • R. Hilpinen, Logic as calculus and logic as language. Synthese 17, 324–330 (1967)

    Article  Google Scholar 

  • R. Hilpinen, Peirce’s logic, in Handbook of the History of Logic: The Rise of Modern Logic from Leibniz to Frege, vol. 3, ed. by D.M. Gabbay et al. (Elsevier, Amsterdam/London, 2004) pp. 611–658

    Chapter  Google Scholar 

  • J. Hintikka, Hilbert vindicated? Synthese 110(1), 15–36 (1997a)

    Article  Google Scholar 

  • J. Hintikka, Lingua Universalis vs. Calculus Ratiocinator. An Ultimate Presupposition of Twentieth-Century Philosophy. Collected Papers, vol. 2 (Kluwer, Dordrecht/Boston, 1997b)

    Google Scholar 

  • J. Hintikka, U. Remes, The Method of Analysis. Its Geometrical Origin and Its General Significance (D. Reidel, Dordrecht/Boston, 1974)

    Google Scholar 

  • J. Hintikka, U. Remes, Ancient geometrical analysis and modern logic, in Essays in Memory of Imre Lakatos, ed. by R.S. Cohen, P.K. Feyerabend, M.W. Wartofsky. Boston Studies in the Philosophy of Science, vol. 39 (D. Reidel, Dordrecht/Boston, 1976)

    Google Scholar 

  • M. Hofmann, T. Streicher, A groupoid model refutes uniqueness of identity proofs, in Proceedings of the 9th Symposium on Logic in Computer Science (LICS), Paris, 1994

    Google Scholar 

  • M. Hofmann, T. Streicher, The groupoid interpretation of type theory, in Twenty-Five Years of Constructive Type Theory, ed. by G. Sambin, J. Smith (Oxford University Press, New York, 1998), pp. 83–111

    Google Scholar 

  • W. Horward, The formulae-as-types notion of construction, in To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, ed. by J.P. Seldin, J.R. Hindley (Academic, London/New York, 1980), pp. 479–490

    Google Scholar 

  • D. Hume, in A Treatise of Human Nature, ed. L.A. Selby (Oxford University Press, New York, 1978)

    Google Scholar 

  • P. Hylton, Russell, Idealism, and the Emergence of Analytic Philosophy (Oxford University Press, New York, 1990)

    Google Scholar 

  • J.R. Isbell, Review of Lawvere:1966. Math. Rev. 34 (1967) #7332

    Google Scholar 

  • B. Jacobs, Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics, vol. 141 (Elsevier, Amsterdam/New York, 1999)

    Google Scholar 

  • P. Johnstone, The point of pointless topology. Bull. Am. Math. Soc. (N.S.) 8(1), 41–53 (1983)

    Article  Google Scholar 

  • P. Johnstone, Sketches of an Elephant: A Topos Theory Compendium, Vols. 1–2. (Oxford University Press, Oxford/New York 2002)

    Google Scholar 

  • A. Joyal, Remarks on homotopical logic. Mathematisches Forschungsinstitut Oberwolfach, Mini-Workshop: The Homotopy Interpretation of Constructive Type Theory, Report N 11/2011, 2011, pp. 19–22

    Google Scholar 

  • D.M. Kan, Adjoint functors. Trans. Am. Math. Soc. 87, 294–329 (1958)

    Google Scholar 

  • I. Kant, Kritik der reinen Vernunft (Meiner Verlag, Hamburg, 1998)

    Book  Google Scholar 

  • Im. Kant, Critique of Pure Reason (Translated into English by P. Guyer) (Cambridge University Press, Cambridge/New York, 1999)

    Google Scholar 

  • M.M. Kapranov, V.A. Voevodsky, -groupoids and homotopy types. Cahiers de Topologie et Géometrie Différentielle Catégoriques32(1), 29–46 (1991)

    Google Scholar 

  • J. Keranen, The identity problem for realist structuralism. Br. J. Philos. Sci. 9(3), 308–330 (2001)

    Google Scholar 

  • F. Klein, über die sogenannte nicht-euklidische geometrie. Math. Ann. 4, 573–625 (1871)

    Article  Google Scholar 

  • F. Klein, Vergleichende Betrachtungen über neuere geometrische Forschungen (A. Deichert, Erlangen, 1872)

    Google Scholar 

  • F. Klein, über die sogenannte nicht-euklidische geometrie (zweiter aufsatz). Math. Ann. 6, 112–145 (1873)

    Article  Google Scholar 

  • A.N. Kolmogorov, S.V. Fomin, Elementi teorii funkcii i funkcionalnogo analysa (in Russian). (Nauka, Moscow, 1967)

    Google Scholar 

  • E.E. Kummer, Über die Zerlegung der aus Wurzeln der Einheit gebildeten complexen Zahlen in ihre Primfactoren. J. für Math. (Crelle) 35(1847), 327–367

    Google Scholar 

  • R. Kromer, Tool and Object: A History and Philosophy of Category Theory (Birkhauser, Basel/Boston, 2007)

    Book  Google Scholar 

  • K. Kunen, Set Theory: An Introduction to Independence Proofs (Elsevier, Amsterdam, 1980)

    Google Scholar 

  • K. Kuratowski, Topologie I-II (Warszawa-Lwów, 1948–1950)

    Google Scholar 

  • J. Ladyman, Structural realism. Stanford Encyclopedia of Philosophy (2009), http://plato.stanford.edu/entries/structural-realism/

  • J. Lambek, Deductive systems and categories. (i) Syntactic calculus and residuated categories. Math. Syst. Theory 2, 287–318 (1968)

    Article  Google Scholar 

  • J. Lambek, Deductive systems and categories. (ii) Standard constructions and closed categories, in Category Theory, Homology Theory, and Their Applications, ed. by P.J. Hilton. Volume 86 of Lecture Notes in Mathematics Springer, vol. 1 (Springer, Berlin, 1969), pp. 76–122

    Google Scholar 

  • J. Lambek, Deductive systems and categories. (iii) Cartesian closed categories, intuitionistic propositional calculus, and combinatory logic, in Toposes, Algebraic Geometry and Logic, ed. by F.W. Lawvere. Volume 274 of Lecture Notes in Mathematics (Springer, Berlin/New York, 1972), pp. 57–82

    Google Scholar 

  • F.W. Lawvere, Functorial semantics of algebraic theories. Ph.D. Columbia University, 1963

    Book  Google Scholar 

  • F.W. Lawvere, An elementary theory of the category of sets. Proc. Natl. Acad. Sci. U.S.A. 52, 1506–1511 (1964)

    Article  Google Scholar 

  • F.W. Lawvere, The category of categories as a foundation for mathematics. In: S. Eilenberg et al. (eds.), Proceedings of the Conference on Categorical Algebra, La Jolla, 1965 (Springer, New York, 1966a), pp. 1–21

    Google Scholar 

  • F.W. Lawvere, Functorial semantics of elementary theories. J. Symb. Log. 31, 294–295 (1966b)

    Google Scholar 

  • F.W. Lawvere, Theories as categories and the completeness theorem. J. Symb. Log. 32, 562 (1967)

    Google Scholar 

  • F.W. Lawvere, Adjointness in foundations. Dialectica 23, 281–296 (1969a)

    Article  Google Scholar 

  • F.W. Lawvere, Diagonal arguments and cartesian closed categories, in Category Theory, Homology Theory and Their Applications II, ed. by P.J. Hilton. Volume 92 of Lecture Notes in Mathematics, vol. 2 (Springer, Berlin, 1969b) pp. 134–145

    Google Scholar 

  • F.W. Lawvere, Equality in hyperdoctrines and comprehension schema as an adjoint functor, in Applications of Categorical Algebra. Proceedings of the Symposoia in Pure Mathematics, New York, 1968, vol. XVII, (1970a), pp. 1–14

    Google Scholar 

  • F.W. Lawvere, Quantifiers and sheaves, in Actes du congres international des mathematiciens, Nice, 1970, ed. by M. Berger, J. Dieudonne et al. (1970b), pp. 329–334

    Google Scholar 

  • F.W. Lawvere, Some thoughts on the future of category theory, in Category Theory, Proceedings, Como, 1990. Springer Lecture Notes in Mathematics, vol. 1488 (Springer, 1991), pp. 1–13

    Google Scholar 

  • F.W. Lawvere, Categories of space and quantity, in The Space of Mathematics, ed. by J. Echeverria et al. (de Gruyter, Berlin/New York, 1992), pp. 14–30

    Google Scholar 

  • F.W. Lawvere, Coherent toposes and cantor’s ‘lauter einsen’. Philos. Math. 2, 5–15 (1994a)

    Article  Google Scholar 

  • F.W. Lawvere, Tools for the advancement of objective logic: closed categories and toposes, in The Logical Foundations of Cognition, ed. by J. Macnamara, G.E. Reyes. Proceedings of the February 1991 Vancouver Conference “Logic and Cognition” (Oxford University Press, 1994b), pp. 43–56

    Google Scholar 

  • F.W. Lawvere, Adjoints in and among bicategories, in Logic and Algebra, ed. by A. Ursini, P. Agliano (Marcel Dekker, New York, 1996), pp. 181–189

    Google Scholar 

  • F.W. Lawvere, Foundations and applications: axiomatization and education. Bull. Symb. Log. 9(2), 213–224 (2003)

    Article  Google Scholar 

  • F.W. Lawvere, Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories (reprint with the author’s comments). Repr. Theory Appl. Categ. 5, 1–121 (2004)

    Google Scholar 

  • F.W. Lawvere, An elementary theory of the category of sets (long version) with the author’s commentary. Repr. Theory Appl. Categ. 11, 1–35 (2005a)

    Google Scholar 

  • F.W. Lawvere, Taking categories seriously. Repr. Theory Appl. Categ. 2, 1–24 (2005b)

    Google Scholar 

  • F.W. Lawvere, Adjointness in foundations with the author’s commentary. Repr. Theory Appl. Categ. 16, 1–16 (2006)

    Google Scholar 

  • F.W. Lawvere, R. Rosebrugh, Sets for Mathematics (Cambridge University Press, Cambridge/New York, 2003)

    Book  Google Scholar 

  • F.W. Lawvere, S.H. Schanuel, Conceptual Mathematics (Cambridge University Press, Cambridge/New York, 1997)

    Google Scholar 

  • T. Leinster, A survey of denitions of n-category. Theory Appl. Categ. 10, 1–70 (2002)

    Google Scholar 

  • T. Leinster, Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series, vol. 298 (Cambridge University Press, Cambridge/New York, 2004). arXiv:math/0305049

    Google Scholar 

  • C. Levi-Strauss, The Elementary Structures of Kinship (Taylor and Francis, London, 1969)

    Google Scholar 

  • J. Lambek, P.J. Scott, Higher Order Categorical Logic (Cambridge University Press, Cambridge/New York, 1986)

    Google Scholar 

  • N.I. Lobachevsky, Geometrische Untersuchungen zur Theorie der Parallellinien (F. Fincke, Berlin, 1840)

    Google Scholar 

  • N.I. Lobachevsky, New foundations of geometry, in Selected Works in Geometry (Academy of Sciences of USSR Publishing, Moscow, 1956), pp. 73–312 (in Russian)

    Google Scholar 

  • L. Lobachevsky, Geometrical Researches on the Theory of Parallels (trans. by G.B. Halsted) (Cosimo, New York, 2007)

    Google Scholar 

  • J.R. Lucas, Treatise on Time and Space (Methuen, London, 1973)

    Google Scholar 

  • J. Lurie, Higher Topos Theory. Annals of Mathematics Studies, vol. 170 (Princeton University Press, Princeton, 2009)

    Google Scholar 

  • S. MacLane, Structure in mathematics. Philos. Math. 4(2), 174–183 (1996)

    Article  Google Scholar 

  • S. MacLane, Categories for the Working Mathematician, 2nd edn. (Springer, New York, 1998)

    Google Scholar 

  • S. MacLane, I. Moerdijk, Sheaves in Geometry and Logic: A First Introduction to Topos Theory (Springer, New York, 1992)

    Google Scholar 

  • M. Makkai, Towards a categorical foundation of mathematics. Lect. Notes Log. 11, 153–190 (1998)

    Article  Google Scholar 

  • Yu.I. Manin, Lectures on Algebraic Geometry (in Russian) (Moscow State University, Moscow, 1970)

    Google Scholar 

  • Yu. Manin, Georg cantor and his heritage (talk at the meeting of the german mathematical society and the cantor medal award ceremony) (2002). arXiv:math.AG/02009244 v1/

    Google Scholar 

  • J. Mayberry, The Foundations of Mathematics in the Theory of Sets (Cambridge University Press, Cambridge/New York, 2000)

    Google Scholar 

  • J.-P. Marquis, From a Geometrical Point of View: A Study of the History and Philosophy of Category Theory (Springer, Dordrecht/London, 2009)

    Google Scholar 

  • J.-P. Marquis, Reyes G.E, The history of categorical logic: 1963–1977, in Handbook of the History of Logic: Sets and Extensions in the Twentieth Century, vol. 6, ed. by A. Kanamori (Elsevier, Amsterdam/Boston, 2012), pp. 689–800

    Chapter  Google Scholar 

  • P. Martin-Löf, Intuitionistic Type Theory. Notes by Giovanni Sambin of a Series of Lectures Given in Padua, June 1980 (BIBLIOPOLIS, Napoli, 1984)

    Google Scholar 

  • C. McLarty, Axiomatizing a category of categories. J. Symb. Log. 56(4), 1243–1260 (1991)

    Article  Google Scholar 

  • C. McLarty, Elementary Categories, Elementary Toposes (Clarendon, Oxford, 1992)

    Google Scholar 

  • C. McLarty, Exploring categorical structuralism. Philos. Math. 12(1), 37–53 (2004)

    Article  Google Scholar 

  • B. Mélès, Pratique mathématique et lecture de hegel de jean cavaillès à william lawvere. Philos. Sci. 16(1), 153–182 (2012)

    Google Scholar 

  • C.U. Moulines, W. Balzer, J.D. Sneed, An Architectonic for Science: The Structuralist Approach (Reidel, Dordrecht, 1987)

    Google Scholar 

  • P. Nahin, An Imaginary Tale (Princeton University Press, Princeton, 1998)

    Google Scholar 

  • P. Natorp, Kant und die Marbuger Schule. Kant-Studien 17, 193–221 (1912)

    Google Scholar 

  • R. Nozick, Invariances. The Structure of Objective World (Harvard University Press, Cambridge-Massachusetts, 2001)

    Google Scholar 

  • C. Parsons, Mathematical Thought and Its Objects (Cambridge University Press, New York, 2008)

    Google Scholar 

  • M. Pasch, Vorlesungen über neueren Geometrie (Teubner, Leipzig, 1882)

    Google Scholar 

  • V. Peckhaus, Pro and contra Hilbert: Zermelo’s set theories. Philos. Sci. (2008), http://philosophiascientiae.revues.org/390

  • P. Pritchard, Plato’s Philosophy of Mathematics. International Plato Studies, vol. 5 (Academia, Sankt Augustin, 1995)

    Google Scholar 

  • Proclus, A Commentary on the First Book of Euclid’s Elements (trans. by G.R. Morrow) (Princeton University Press, Princeton, 1970)

    Google Scholar 

  • D. Quillen, Homotopical Algebra. Lecture Notes in Mathematics, vol. 43 (Springer, Berlin/New York, 1967)

    Google Scholar 

  • W.O. Quine, From a Logical Point of View (Harvard University Press, Cambridge, Massachusetts, 1953)

    Google Scholar 

  • W.O. Quine, Ontological Relativity and Other Essays (Columbia University Press, New York, 1969)

    Book  Google Scholar 

  • D. Rabouin, Structuralisme et comparatisme en sciences humaines et en mathématiques: un malentendu? in Le moment philosophique des années 1960 en France, ed. by P. Maniglier (Presses universitaires de France, Paris, 2011), pp. 37–57

    Google Scholar 

  • P.K. Rashevskii, On the dogma of the natural numbers. Russ. Math. Surv. 28, 143–148 (1973)

    Article  Google Scholar 

  • H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics (Naukowe, Państwowe Wydawn, 1963)

    Google Scholar 

  • G.E. Reyes, L.P. Reyes, H. Zolfaghari, Generic Figures and Their Gluings (Polimetrica, Milano, 2004)

    Google Scholar 

  • H.-J. Rheinberger, On Historicizing Epistemology (Stanford University Press, Stanford, 2010)

    Google Scholar 

  • B. Riemann, über die hypothesen, welche der geometrie zugrunde liegen. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13(1867), 133–152 (1854)

    Google Scholar 

  • B. Riemann, über die hypothesen, welche der geometrie zu grunde liegen (habilitationsvortrag of 1854). Abhandlungen der Kgl. Gesellschaft der Wissenschaften zu Göttingen 13, 133–152 (1867)

    Google Scholar 

  • A. Rodin, Events and Intensional Sets, in Logica’2002, Proceedings of the International Symposium, ed. by T. Childers, O. Majer (Czech Academy of Science, Prague, 2003), pp. 221–232

    Google Scholar 

  • A. Rodin, Identity and categorification. Philos. Sci. 11(2), 27–65 (2007)

    Google Scholar 

  • A. Rodin, How mathematical concepts get their bodies. Topoi 29(1), 53–60 (2010)

    Article  Google Scholar 

  • D. Rowe, Klein, hilbert, and the göttingen mathematical tradition. Osiris 5, 186–213 (1989)

    Article  Google Scholar 

  • D. Rowe, The calm before the storm: Hilbert’s early views on foundations, in Proof Theory: History and Philosophical Significance, ed. by V. Hendricks et al. Synthese Library, vol. 292 (Kluwer, Dordrecht/Boston, 2000), pp. 55–88

    Google Scholar 

  • B. Russell, An Essay on the Foundations of Geometry (Cambridge University Press, Cambridge, 1897)

    Google Scholar 

  • B. Russell, An Critical Exposition of the Philosophy of Leibniz (Cambridge University Press, Cambridge, 1900)

    Google Scholar 

  • B. Russell, Principles of Mathematics (Allen and Unwin, London, 1903)

    Google Scholar 

  • B. Russell, Les paradoxes de la logique. Revue de métaphysique et de morale 14, 627–650 (1906a). Reprinted in Heinzmann (1986)

    Google Scholar 

  • B. Russell, On some difficulties in the theory of transfinite numbers and order types. Proc. Lond. Math. Soc. 4(Ser. 2), 29–53 (1906b). Reprinted in Heinzmann (1986)

    Google Scholar 

  • B. Russell, Mathematical logic as based on the theory of types. Am. J. Math. 28, 222–262 (1908). Reprinted in Heinzmann (1986).

    Article  Google Scholar 

  • B. Russell, The philosophy of logical atomism. Monist 28, 495–527 (1918)

    Article  Google Scholar 

  • B. Russell, The classification of relations, in Collected Papers, vol. 2 (Unwin Hyman, London, 1990), pp. 138–146

    Google Scholar 

  • B. Russell, A. Whitehead, Principia Mathematica, 3 vols (Cambridge University Press, Cambridge, 1910–1913)

    Google Scholar 

  • G.G. Saccheri, Euclide Ab Omni Naevo Vindicatus (Typis P. A. Montani, Milano, 1733)

    Google Scholar 

  • H. Scholz, H. Schweitzer, Die sogenannten Definitionen durch Abstraktion (Felix Meiner, Leipzig, 1935)

    Google Scholar 

  • M. Schönfinkel, Über die bausteine der mathematischen logik. Math. Ann. 92, 305–316 (1924a)

    Article  Google Scholar 

  • M. Schönfinkel, On the building blocks of mathematical logic, in From Frege to Gödel: A Source Book in the Mathematical Logic, ed. by J. van Heijenoort (Harvard University Press, Cambridge, 1967), pp. 355–366

    Google Scholar 

  • D. Scott, Constructive validity, in Symposium on Automatic Demonstration, Versailles, 1968, ed. by M. Laudet et al. Lecture Notes on Mathematics, vol. 125, (1970), pp. 237–275

    Google Scholar 

  • R.A.G. Seely, Locally cartesian closed categories and type theory. Math. Proc. Camb. Math. Soc. 95 33–48 (1984)

    Article  Google Scholar 

  • J.P. Seldin, The logic of Church and Curry, Handbook of the History of Logic, vol. 5, ed. by D.R. Gabbay, J. Woods (Elsevier/North Holland, Amsterdam/Boston, 2009), pp. 819–894

    Google Scholar 

  • M. Serfati, La revolution symbolique: la Constitution de l’Ecriture Symbolique Mathématique (Editions Petra, Paris, 2005)

    Google Scholar 

  • S. Shapiro, Foundations without Foundationalism: A Case for Second-order Logic (Oxford University Press, New York, 1991)

    Google Scholar 

  • A. Shenitzer, The cinderella career of projective geometry. Math. Intell. 13(2), 50–55 (1991)

    Article  Google Scholar 

  • J.D. Sneed, The Logical Structure of Mathematical Physics (Reidel, Dordrecht, 1971)

    Book  Google Scholar 

  • G. Sommaruga, History and Philosophy of Constructive Type Theory. Synthese Library vol. 290 (Springer, Berlin/New York, 2000)

    Google Scholar 

  • T. Streicher, Investigations into intensional type theory. Habilitationsschrift. Ludwig-Maximilians-Universität München, 1993

    Google Scholar 

  • F. Suppe, The Structure of Scientific Theories: Symposium, 1969, Urbana. Outgrowth with a Critical Introduction and an Afterword by Frederick Suppe (University of Illinois Press, Urbana, 1977)

    Google Scholar 

  • F. Suzuki. Homotopy and path integrals (2011). arXiv:1107.1459

    Google Scholar 

  • A. Tarski, Introduction to Logic and to the Methodology of Deductive Sciences (Oxford University Press, New York, 1941)

    Google Scholar 

  • A. Tarski. Sentential calculus and topology, in Logic, Semantics, Metamathematics: Papers from 1923 to 1938 (trans. by J.H. Woodger) (Clarendon, Oxford, 1956), pp. 421–454

    Google Scholar 

  • A. Tarski, What are logical notions? Hist. Philos. Log. 7, 143–154 (1986)

    Article  Google Scholar 

  • M. Toepell, On the origins of david hilbert’s “grundlagen der geometrie”. Arch. Hist. Exact Sci. 35(4), 329–344 (1986)

    Article  Google Scholar 

  • A. Trendelenburg, Logische Untersuchungen (Verlag von S. Hirzel, Leipzig, 1862)

    Google Scholar 

  • S. Unguru, On the need to rewrite the history of greek mathematics. Arch. Exact Sci. 15, 67–114 (1975)

    Article  Google Scholar 

  • D. van Dalen, Internal type theory, in Types for Proofs and Programs, Torino, 1995. Lecture Notes in Computer Science, vol. 1158 (Springer, Berlin/New York, 1996), pp. 120–134

    Google Scholar 

  • D. van Dalen, The development of Brouwer’s intuitionism, in Proof Theory: History and Philosophical Significance, ed. by V. Hendricks et al. Synthese Library, vol. 292 (Kluwer, Dordrecht/Boston, 2000), pp. 117–152

    Google Scholar 

  • B. van der Waerden, Moderne Algebra (Springer, Berlin, 1930–1931)

    Google Scholar 

  • V.L. Vasyukov, Mathematical pluralism (in Russian), in Proceedings of International Conference on Philosophy, Mathematics, Linguistics: Aspects of Interaction, Saint-Petersburg, 20–22 Nov 2009, ed. by O. Prosorov et al. (2009), pp. 222–227

    Google Scholar 

  • O. Veblen, J.H.C. Whitehead, The Foundations of Differential Geometry. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 29 (Cambridge University Press, Cambridge, 1932)

    Google Scholar 

  • J. Venn, Symbolic Logic (MacMillan, London, 1881)

    Book  Google Scholar 

  • V.A. Voevodsky, Introduction to the univalent foundations of mathematics (video recording of lecture given at princeton institute of advanced studies 10 Dec 2010, www.math.ias.edu/node/2778

  • V.A. Voevodsky, Univalent foundations. Mathematisches Forschungsinstitut Oberwolfach, mini-workshop: the homotopy interpretation of constructive type theory, Report N 11/2011, 2011, pp. 7–10

    Google Scholar 

  • V.A. Voevodsky et al., Homotopy Type Theory: Univalent Foundations of Mathematics, Institute for Advanced Study (Princeton), The Univalent Foundations Program, 2013. http://homotopytypetheory.org/book/

  • M.L. Wantzel, Recherches sur les moyens de reconnaître si un problème de géométrie peut se résoudre avec la règle et le compas. Journal de Mathématiques Pures et Appliquées 2(1), 366–372 (1837)

    Google Scholar 

  • M.A. Warren, Homotopy theoretic aspects of constructive type theory, Ph.D. thesis, 2008, www.andrew.cmu.edu/user/awodey/students/warren.pdf

  • Ch. Wells, Sketches: Outline with references, Deparment of Computer Science, Katholieke Universiteit Leuven, 1994

    Google Scholar 

  • H. Weyl, Space-Time-Matter (translated into English by H.L. Brose) (Dover, Mineola, 1950)

    Google Scholar 

  • D. Wiggins, Sameness and substance (Blackwell, Oxford, 1980)

    Google Scholar 

  • E. Wigner, The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math. 13, 1–14 (1960)

    Article  Google Scholar 

  • H. Wussing, The Genesis of the Abstract Group Concept: A Contribution to the History of the Origin of Abstract Group Theory (Dover, New York, 2007)

    Google Scholar 

  • R. Zach, Hilbert’s program, in Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta et al. (Stanford University, Stanford, 2003), http://plato.stanford.edu/

  • E. Zermelo, Untersuchungen über die Grundlagen der Mengenlehre. Math. Ann. 59, 261–281 (1908). Reprinted in Heinzmann (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodin, A. (2014). Euclid: Doing and Showing. In: Axiomatic Method and Category Theory. Synthese Library, vol 364. Springer, Cham. https://doi.org/10.1007/978-3-319-00404-4_2

Download citation

Publish with us

Policies and ethics