Skip to main content

Modelling Geographic Relationships in Automated Environments

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Geoinformation and Cartography ((ICA))

Abstract

Automated processes such as cartographic generalisation require formal abstraction of the geographic space in order to analyse, process and transform it. Spatial relations are key to understanding geographic space and their modelling is a critical issue. This chapter reports on existing classifications and modelling frameworks for spatial relations. A generic model is proposed for building an ontology of spatial relations for automatic processes such as generalisation or on-demand mapping, with a focus on so-called multiple representation relations. Propositions to use such ontology in an automated environment are reported. The three use cases of the chapter describe recent research that uses relations modelling. The first use case is the extension of CityGML with relations for 3D city models. The second use case presents the use of spatial relations for automatic spatial analysis, and particularly the grouping of natural features such as lakes or islands. Finally, the third use case is a data migration model guided by relations that govern the positioning of thematic data upon changing reference data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amorim JH, Valente J, Pimentel C, Miranda AI, Borrego C (2012) Detailed modelling of the wind comfort in a city avenue at the pedestrian level. Usage, usability, and utility of 3D city models, Nantes

    Google Scholar 

  • Balley S, Jaara K, Regnauld N (2012) Towards a prototype for deriving custom maps from multisource data. In: Proceedings of the 15th ICA workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul, Turkey

    Google Scholar 

  • Bejaoui L, Pinet F, Bedard Y, Schneider M (2009) Qualified topological relations between spatial objects with possible vague shape. Int J Geogr Inf Sci 23(7):877–921

    Article  Google Scholar 

  • Bertin J (1983) Semiology of graphics: diagrams, networks, maps. University of Wisconsin Press, Madison

    Google Scholar 

  • Billen R, Zaki CE, Servières M (2012) Developing an ontology of space: application to 3D city modeling. In: Leduc T, Moreau G, Billen R (eds) Usage, usability, and utility of 3D city models

    Google Scholar 

  • Borrmann A, Rank E (2009) Specification and implementation of directional operators in a 3D spatial query language for building information models. Adv Eng Inform 23(1):32–44. doi:10.1016/j.aei.2008.06.005

    Article  Google Scholar 

  • Brando C, Bucher B, Abadie A (2011) Specifications for user generated spatial content. In: Geertman S, Reinhardt W, Toppen F (eds) Advancing geoinformation science for a changing world, vol 1. Springer, Heidelberg, pp 479–495

    Chapter  Google Scholar 

  • Brans JP, Mareschal B (2005) Promethee methods. In: Figueira J, Greco S, Ehrogott M (eds) Multiple criteria decision analysis: state of the art surveys. international series in operations research and management science, vol 78. Springer, New York, pp 163–186. doi:10.1007/0-387-23081-5_5

  • Brasebin M, Perret J, Haëck C (2011) Towards a 3D geographic information system for the exploration of urban rules: application to the French local urban planning schemes. In: 28th urban data management symposium (UDMS 2011)

    Google Scholar 

  • Brassel KE, Weibel R (1988) A review and conceptual framework of automated map generalization. Int J Geogr Inf Syst 2(3):229–244. doi:10.1080/02693798808927898

    Article  Google Scholar 

  • Bucher B, Falquet G, Clementini E, Sester M (2012) Towards a typology of spatial relations and properties for urban applications. In: Leduc T, Moreau G, Billen R (eds) Proceedings of usage, usability and utility of 3D city models, COST TU0801 final conference, EDP Sciences, Nantes

    Google Scholar 

  • Burghardt D, Schmid S, Stoter J (2007) Investigations on cartographic constraint formalisation. In: Proceedings of the 11th ICA workshop on generalisation and multiple representation, Moscow, Russia

    Google Scholar 

  • Burghardt D, Petzold I, Bobzien M (2010) Relation modelling within multiple representation databases and generalisation services. Cartographic J 47(3):238–249. doi:10.1179/000870410X12699418769035

    Article  Google Scholar 

  • Caneparo L, Collo M, di Giannantonio D, Lombardo V, Montuori A, Pensa S (2007) Generating urban morphologies from ontologies. In: 2nd workshop COST action C21—towntology. http://www.towntology.net/Meetings/0710-Torino/articles/13Paper%20%28162-177%29.pdf

  • Chaudhry OZ, Mackaness WA (2007) Utilising partonomic information in the creation of hierarchical geographies. In: Proceedings of the 11th ICA workshop on generalisation and multiple representation, Moscow, Russia

    Google Scholar 

  • Chaudhry OZ, Mackaness WA, Regnauld N (2009) A functional perspective on map generalisation. Comput Environ Urban Syst 33(5):349–362

    Article  Google Scholar 

  • Clementini E (2010) Ontological impedance in 3D semantic data modeling. In: Kolbe TH, König G, Nagel C (eds) Proceedings of 5th 3D geoinfo conference, Berlin, ISPRS, pp 97–100

    Google Scholar 

  • Cohn AG, Hazarika SM (2001) Qualitative spatial representation and reasoning: an overview. Fundam Inf 46(1–2):1–29

    Google Scholar 

  • Corcoran P, Mooney P, Bertolotto M (2012) Spatial relations using high level concepts. ISPRS Int J Geo-Inf 1(3):333–350. doi:10.3390/ijgi1030333

    Article  Google Scholar 

  • Duchêne C, Ruas A, Cambier C (2012) The cartACom model: transforming cartographic features into communicating agents for cartographic generalisation. Int J Geogr Inf Sci 26(9):1533–1562. doi:10.1080/13658816.2011.639302

    Article  Google Scholar 

  • Egenhofer MJ, Franzosa RD (1991) Point-set topological spatial relations. Int J Geogr Inf Syst 5(2):161–174. doi:10.1080/02693799108927841

    Article  Google Scholar 

  • Fisher-Gewirtzman D (2012) 3D models as a platform for urban analysis and studies on human perception of space. Usage, usability, and utility of 3D city models. Nantes

    Google Scholar 

  • Gould N, Chaudhry O (2012) An ontological approach to on-demand mapping. In: Proceedings of the 15th ICA workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul, Turkey

    Google Scholar 

  • Jaara K, Duchêne C, Ruas A (2012) A model for preserving the consistency between topographic and thematic layers throughout data migration. In: Proceedings of 15th international symposium on spatial data handling (SDH’12), Bonn

    Google Scholar 

  • Jaara K, Duchêne C, Ruas A (2013) Preservation and modification of relations between thematic and topographic data throughout thematic data migration process. In: Cartography from pole to pole: selected contributions to the 26th international cartographic conference 2013, Springer, Dresden

    Google Scholar 

  • Jones C (1997) Geographical information systems and computer cartography. Prentice Hall, New Jeresy

    Google Scholar 

  • Kolbe TH, Gröger G, Plümer L (2005) CityGML: interoperable access to 3D city models. In: van Oosterom P, Zlatanova S, Fendel EM (eds) Geo-information for disaster management. Springer, Berlin, pp 883–899

    Chapter  Google Scholar 

  • Li Z, Yan H, Ai T, Chen J (2004) Automated building generalization based on urban morphology and gestalt theory. Int J Geogr Inf Sci 18(5):513–534. doi:10.1080/13658810410001702021

    Article  Google Scholar 

  • Mackaness WA, Chaudhry OZ (2011) Automatic classification of retail spaces from a large scale topographic database. Trans GIS 15(3):291–307. doi:10.1111/j.1467-9671.2011.01259.x

    Article  Google Scholar 

  • Mackaness WA, Edwards G (2002) The importance of modelling pattern and structure in automated map generalisation. In: Proceedings of the joint ISPRS/ICA workshop on multi-scale representations of spatial data, pp 7–8

    Google Scholar 

  • Mathet Y (2000) New paradigms in space and motion: a model and an experiment. In: Proceedings of the ECAI 2000 workshop on current issues in spatio-temporal reasoning, Berlin

    Google Scholar 

  • Matsakis P, Wawrzyniak L, Ni J (2008) Relative positions in words: a system that builds descriptions around allen relations. Int J Geogr Inf Sci 24(1):1–23. doi: 10.1080/13658810802270587

    Article  Google Scholar 

  • McMaster RB, Shea KS (1988) Cartographic generalization in digital environment: a framework for implementation in a GIS. In: GIS/LIS’88, pp 240–249

    Google Scholar 

  • Mustière S, Moulin B (2002) What is spatial context in cartographic generalisation? In: Joint International Symposium and Exhibition on Geospatial Theory, Processing and Applications. ISPRS & SIS, vol 34. pp 274–278

    Google Scholar 

  • OGC (2012) OGC city geography markup language (CityGML) encoding standard, v2.0.0, OGC project document OGC12-019. In: Gröger G, Kolbe T, Nagel C, Häfele K-H (eds)

    Google Scholar 

  • Papadias D, Theodoridis Y (1997) Spatial relations, minimum bounding rectangles, and spatial data structures. Int J Geogr Inf Sci 11(2):111–138. doi:10.1080/136588197242428

    Article  Google Scholar 

  • Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connection. In: Proceedings of 3rd international conference on knowledge representation and reasoning, Morgan Kaufmann, Burlington, Massachusetts, USA

    Google Scholar 

  • Ruas A (1999) Modèle de généralisation de données géographiques à base de contraintes et d’autonomie. Ph.D. dissertation, Université de Marne-la-Vallée

    Google Scholar 

  • Ruas A, Duchêne D (2007) A prototype generalisation system based on the multi-agent system paradigm. In: Mackaness WA, Ruas A, Sarjakoski LT (eds) The generalisation of geographic information: models and applications, Elsevier, pp 269–284 (Chapter 14)

    Google Scholar 

  • Steiniger S, Hay GJ (2008) An experiment to assess the perceptual organization of polygonal objects. In: Klippel A, Hirtle S (eds) You-are-here-maps—creating a sense of place through map-like representation, spatial cognition 2008, Freiburg, pp 38–44

    Google Scholar 

  • Steiniger S, Burghart D, Weibel R (2006) Recognition of island structures for map generalization. In: GIS ‘06 Proceedings of the 14th annual ACM international symposium on advances in geographic information systems, Arlington, Virginia, pp 67–74. doi:10.1145/1183471.1183484

  • Steiniger S, Weibel R (2007) Relations among map objects in cartographic generalization. Cartography Geogr Inf Sci 34(3):175–197

    Article  Google Scholar 

  • Touya G, Duchêne C, Ruas A (2010) Collaborative generalisation: Formalisation of generalisation knowledge to orchestrate different cartographic generalisation processes. In: Fabrikant S, Reichenbacher T, van Kreveld M, Schlieder C (eds) Geographic information science. Lecture notes in computer science, vol 6292. Springer, Heidelberg, pp 264–278

    Google Scholar 

  • Touya G, Balley S, Duchêne C, Jaara K, Regnauld N, Gould N (2012) Towards an ontology of generalisation constraints and spatial relations. In: Proceedings of the 15th ICA workshop on generalisation and multiple representation, jointly organised with EuroSDR commission on data specifications, Istanbul, Turkey

    Google Scholar 

  • Trinh TH, Chevaillier P, Barange M, Soler J, Loor PD, Querrec R (2011) Integrating semantic directional relationships into virtual environments: a meta-modelling approach. In: Coquillart S, Steed A, Welch G (eds) JVRC11: joint virtual reality conference of EGVE—EuroVR, Nottingham, pp 67–74

    Google Scholar 

  • Wertheimer M (1938) Laws of organization in perceptual forms. In: Ellis W (eds) A source book of Gestalt psychology, Routledge and Kegan Paul, London, pp 71–88 (English edn )

    Google Scholar 

  • Williams EA, Wentz EA (2008) Pattern analysis based on type, orientation, size, and shape. Geogr Anal 40(2):97–122

    Article  Google Scholar 

  • Winter S (2000) Uncertain topological relations between imprecise regions. Int J Geogr Inf Sci 14(5):411–430

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Touya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Touya, G., Bucher, B., Falquet, G., Jaara, K., Steiniger, S. (2014). Modelling Geographic Relationships in Automated Environments. In: Burghardt, D., Duchêne, C., Mackaness, W. (eds) Abstracting Geographic Information in a Data Rich World. Lecture Notes in Geoinformation and Cartography(). Springer, Cham. https://doi.org/10.1007/978-3-319-00203-3_3

Download citation

Publish with us

Policies and ethics