Skip to main content

Real-Time Optimized Rendezvous on Nonholonomic Resource-Constrained Robots

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 88))

Abstract

In this work, we consider a group of differential-wheeled robots endowed with noisy relative positioning capabilities. We develop a decentralized approach based on a receding horizon controller to generate, in real-time, trajectories that guarantee the convergence of our robots to a common location (i.e. rendezvous).Our receding horizon controller is tailored around two numerical optimization methods: the hybrid-state A* and trust-region algorithms. To validate both methods and test their robustness to computational delays, we perform exhaustive experiments on a team of four real mobile robots equipped with relative positioning hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beard, R., McLain, T., Nelson, D., Kingston, D., Johanson, D.: Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. Proceedings of the IEEE 94(7), 1306–1324 (2006)

    Article  Google Scholar 

  2. Branch, M., Coleman, T., Li, Y.: A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM Journal on Scientific Computing 21, 1–23 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Byrd, R., Schnabel, R., Shultz, G.: Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Mathematical Programming 40, 247–263 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chyung, D.H.: Time optimal rendezvous of three linear systems. Journal of Optimization Theory and Applications 12, 242–247 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dimarogonas, D., Johansson, K.: Further results on the stability of distance-based multi-robot formations. In: American Control Conference, pp. 2972–2977 (2009)

    Google Scholar 

  6. Dimarogonas, D., Kyriakopoulos, K.: On the rendezvous problem for multiple nonholonomic agents. IEEE Transactions on Automatic Control 52(5), 916–922 (2007)

    Article  MathSciNet  Google Scholar 

  7. Dimarogonas, D.V., Loizou, S.G., Kyriakopoulos, K.J., Zavlanos, M.M.: A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica 42(2), 229–243 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous driving in unknown environments. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental Robotics. STAR, vol. 54, pp. 55–64. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Eisenberg, E., Gale, D.: Consensus of subjective probabilities: The pari-mutuel method. The Annals of Mathematical Statistics 30(1), 165–168 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Falconi, R., Sabattini, L., Secchi, C., Fantuzzi, C., Melchiorri, C.: A graph–based collision–free distributed formation control strategy. In: 18th IFAC World Congress (2011), doi:10.3182/20110828-6-IT-1002.02450

    Google Scholar 

  11. Fax, J., Murray, R.: Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control 49(9), 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  12. Findeisen, F., Allgöwer, F.: An introduction to nonlinear model predictive control. In: Benelux Meeting on Systems and Control, pp. 119–141 (2002)

    Google Scholar 

  13. Gowal, S., Martinoli, A.: Bayesian rendezvous for distributed robotic systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2765–2771 (2011)

    Google Scholar 

  14. Gowal, S., Martinoli, A.: Real-time optimization of trajectories that guarantee the rendezvous of mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012) (to appear)

    Google Scholar 

  15. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lawton, J., Beard, R., Young, B.: A decentralized approach to formation maneuvers. IEEE Transactions on Robotics and Automation 19(6), 933–941 (2003)

    Article  Google Scholar 

  17. Lochmatter, T., Roduit, P., Cianci, C., Correll, N., Jacot, J., Martinoli, A.: Swistrack - a flexible open source tracking software for multi-agent systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4004–4010 (2008)

    Google Scholar 

  18. McLain, T., Chandler, P., Rasmussen, S., Pachter, M.: Cooperative control of UAV rendezvous. In: Proceedings of the American Control Conference, vol. 3, pp. 2309–2314 (2001)

    Google Scholar 

  19. Meschler, P.: Time-optimal rendezvous strategies. IEEE Transactions on Automatic Control 8(4), 279–283 (1963)

    Article  Google Scholar 

  20. Miele, A., Weeks, M., Ciarcià, M.: Optimal trajectories for spacecraft rendezvous. Journal of Optimization Theory and Applications 132, 353–376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Milam, M., Franz, R., Hauser, J., Murray, R.: Receding horizon control of vectored thrust flight experiment. IEE Proceedings on Control Theory and Applications 152(3), 340–348 (2005)

    Article  Google Scholar 

  22. Moré, J., Sorensen, D.: Computing a trust region step. SIAM Journal on Scientific and Statistical Computing 3, 553–572 (1983)

    Article  Google Scholar 

  23. Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  24. Prorok, A., Arfire, A., Bahr, A., Farserotu, J., Martinoli, A.: Indoor navigation research with the Khepera III mobile robot: An experimental baseline with a case-study on ultra-wideband positioning. In: 2010 International Conference on Indoor Positioning and Indoor Navigation (2010), doi:10.1109/IPIN.2010.5647880

    Google Scholar 

  25. Ren, W.: Distributed attitude consensus among multiple networked spacecraft. In: American Control Conference (2006), doi:10.1109/ACC.2006.1656474

    Google Scholar 

  26. Ren, W., Beard, R.: Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. Springer Publishing Company, Incorporated (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Gowal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gowal, S., Martinoli, A. (2013). Real-Time Optimized Rendezvous on Nonholonomic Resource-Constrained Robots. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 88. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00065-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00065-7_25

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00064-0

  • Online ISBN: 978-3-319-00065-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics