Skip to main content

Hydrogenated Amorphous Silicon TFT Technology and Architecture

  • Chapter
  • First Online:
Introduction to Thin Film Transistors
  • 4803 Accesses

Abstract

Hydrogenated amorphous silicon TFTs are the work-horse of the active matrix flat panel display industry, and the architecture and fabrication processes of these devices are described in this chapter. The properties of a-Si:H, including its meta-stability, are briefly summarised as background to later sections, which include a description of the inverted staggered device architecture, and a consideration of TFT layout issues. The semiconductor and dielectric layers in the TFT are deposited by plasma enhanced chemical vapour deposition, PECVD, and the current implementation and understanding of these processes are presented. Finally, some novel a-Si:H TFT structures are described, including self-aligned and short channel TFTs, as well as high stability devices deposited under conditions of enhanced hydrogen dilution of the PECVD reactant gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flewitt AJ, Milne WI (2004) a-Si:H TFT thin film and substrate materials. In: Kuo Y (ed) Thin film transistors, materials and processes, Vol. 1. Amorphous silicon thin film transistors. Kluwer Academic Publishers, Norwell, Massachusetts

    Google Scholar 

  2. Spear WE, Le Comber PG (1972) Investigation of the localised state distribution in amorphous Si films. J Non-Crystalline Solids 8–10:727–738

    Article  Google Scholar 

  3. Spear WE, Le Comber PG (1975) Substitutional doping of amorphous silicon. Solid State Commun 17(9):1193–1196

    Article  ADS  Google Scholar 

  4. Stutzmann M, Biegelsen DK, Street RA (1987) Detailed investigation of doping in hydrogenated amorphous silicon and germanium. Phys Rev B 35(11):5666–5701

    Article  ADS  Google Scholar 

  5. Snell AJ, Mackenzie KD, Spear WE, Le Comber PG, Hughes AJ (1981) Application of amorphous silicon field effect transistors in addressable liquid crystal displays. Appl Phys 24:357–362

    Article  ADS  Google Scholar 

  6. Yang Y-T, Won TK, Choi SY, Takehara T, Nishimura Y, White JM (2007) The latest plasma-enhanced chemical-vapor deposition technology for large-size processing. IEEE J Disp Tech 3(4):386–391

    Article  Google Scholar 

  7. Street RA (1991) Hydrogenated amorphous silicon. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Morel G, Katiyar RS, Weisz SZ, Jia H, Shinar J, Balberg I (1995) Raman study of the network disorder in sputtered and glow discharge a-Si:H films. J Appl Phys 78(8):5120–5125

    Article  ADS  Google Scholar 

  9. Hack M, Shur MS, Shaw JG (1989) Physical models for amorphous-silicon thin-film transistors and their implementation in a circuit simulation program. Trans IEEE ED-36(12), 2764–2769

    Google Scholar 

  10. Powell MJ, Deane SC (1996) Defect-pool model and the hydrogen density of states in hydrogenated amorphous silicon. Phys Rev B 53(15):10121–10132

    Article  ADS  Google Scholar 

  11. Robertson J (2000) Growth processes of hydrogenated amorphous silicon. Mat Res Soc Symp Proc 609:A1.4.1–A1.4.12

    Article  Google Scholar 

  12. Street RA (1989) Thermal equilibrium electronic properties of a-Si:H. IEEE Trans ED-36(12), 2770–2774

    Google Scholar 

  13. Staebler DL, Wronski CR (1980) Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J Appl Phys 51(6):3262–3268

    Article  ADS  Google Scholar 

  14. Stutzmann M (1997) Microscopic aspects of the Staebler-Wronski effect. Mat Res Soc Symp Proc 467:37–48

    Article  Google Scholar 

  15. Fritzsche H (2001) Development in understanding and controlling the Staebler-Wronski effect in a-Si:H. Annu Rev Mater Res 31:47–79

    Article  ADS  Google Scholar 

  16. Flewitt AJ (2012) Hydrogenated Amorphous Silicon Thin Film Transistors (a–Si:H TFTs). In: Chen J, Cranton W, Fihn M (eds) Handbook of visual display technology. Springer, Berlin

    Google Scholar 

  17. Lin W-Y, Wu WB, Cheng KC, Li HH (2012) Photolithography for thin-film-transistor liquid crystal displays. In: Chen J, Cranton W, Fihn M (eds) Handbook of visual display technology. Springer, Berlin

    Google Scholar 

  18. Cheng H-C (2012) Wet etching. In: Chen J, Cranton W, Fihn M (eds) Handbook of visual display technology. Springer, Berlin

    Chapter  Google Scholar 

  19. Kuo Y (2004) Plasma etching in a-Si:H TFT array fabrication. In: Kuo Y (ed) Thin film transistors, materials and processes, Vol. 1. Amorphous silicon thin film transistors. Kluwer Academic Publishers, Norwell

    Google Scholar 

  20. Stamate E, Yeom GY (2012) Dry etching. In: Chen J, Cranton W, Fihn M (eds) Handbook of visual display technology. Springer, Berlin

    Google Scholar 

  21. Powell MJ (1989) The physics of amorphous-silicon thin-film transistors. IEEE Trans ED-36(12), 2753–2763

    Google Scholar 

  22. http://www.nikon.com/products/precision/lineup/fx/pdf/FX-Series-GeneralCatalog.pdf (Accessed Feb, 2011)

  23. French ID, Deane SC, Murley DT, Hewett J, Gale IG, Powell MJ (1997) The effect of the amorphous silicon alpha-gamma transition on thin film transistor performance. Mat Res Soc Symp Proc 467:875–880

    Article  Google Scholar 

  24. He S, Nishiki H, Hartzell J, Nakata Y (2000) Low Temperature PECVD a-Si:H TFT for plastic substrates. SID’00 Digest, 278–281

    Google Scholar 

  25. Wehrspohn RB, Deane SC, French ID, Gale I, Hewett J, Powell MJ, Robertson J (2000) Relative importance of the Si–Si bond and Si–H bond for the stability of amorphous silicon thin film transistors. J Appl Phys 87(1):144–154

    Article  ADS  Google Scholar 

  26. Sazonov A, Nathan A, Murthy RVR, Chamberlain SG (2000) Fabrication of a-Si:H TFTs at 120 °C on flexible polyimide substrates. Mat Res Soc Symp Proc 558:375–380

    Article  Google Scholar 

  27. Robertson J (2000) Deposition mechanism of hydrogenated amorphous silicon. J Appl Phys 87(5):2608–2617

    Article  ADS  Google Scholar 

  28. Cabarrocas PR (1998) Growth of undoped a-Si:H by PECVD. In: Searle T (ed) Properties of amorphous silicon and its alloys. Institution of Engineering and Technology

    Google Scholar 

  29. Tsai CC, Anderson GB, Thompson R (1990) Growth of amorphous, microcrystalline and epitaxial silicon in low temperature plasma deposition. Mat Res Soc Symp Proc 192:475–480

    Article  Google Scholar 

  30. Sturm JC, Hekmatshoar B, Cherenack K, Wagner S (2009) Enabling mechanisms for a-Si TFT’s with 100-year lifetimes compatible with clear plastic substrates. Proc 5th Internal TFT Conf, ITC’09, 9.1

    Google Scholar 

  31. Lucovsky G, Nemanich RJ, Knights JC (1979) Structural interpretation of the vibrational spectra of a-Si:H alloys. Phys Rev B 19(4):2064–2073

    Article  ADS  Google Scholar 

  32. Kessels WMM, Smets AHM, Marra DC, Aydil ES, Schram DC, van de Sanden MCM (2001) On the growth mechanism of a-Si:H. Thin Solid Films 383:154–160

    Article  ADS  Google Scholar 

  33. Cabarrocas PR (1998) Growth of doped a-Si:H by PECVD. In: Searle T (ed) Properties of amorphous silicon and its alloys. Institution of Engineering and Technology

    Google Scholar 

  34. Street RA (1982) Doping and the Fermi energy in amorphous silicon. Phys Rev Lett 49(16):1187–1190

    Article  ADS  Google Scholar 

  35. Murley D, French I, Deane S, Gibson R (1996) The effect of hydrogen dilution on the aminosilane plasma regime used to deposit nitrogen-rich amorphous silicon nitride. J Non-Cryst Solids 198–200:1058–1062

    Article  Google Scholar 

  36. Hiranaka K, Yosimura T, Yamaguchi T (1987) Influence of an a-SiNx:H gate insulator on an amorphous silicon thin film transistor. J Appl Phys 62(5):2129–2135

    Article  ADS  Google Scholar 

  37. Lustig N, Kanicki J (1989) Gate dielectric and contact effects in hydrogenated amorphous silicon-silicon nitride thin-film transistors. J Appl Phys 65(10):3951–3957

    Article  ADS  Google Scholar 

  38. Gleskova H, Wagner S, Gasparik V, Kovac P (2001) Low temperature silicon nitride for thin-film electronics on polyimide substrates. Appl Surf Sci 175–176:12–16

    Article  Google Scholar 

  39. Murley DT, Gibson RAG, Dunnett B, Goodyear A, French ID (1995) Influence of gas residence time on the deposition of nitrogen-rich amorphous silicon nitride. J Non-Cryst Solids 187:324–328

    Article  ADS  Google Scholar 

  40. Smith DL, Alimonda AS, Chen C-C, Ready SE, Wacker B (1990) Mechanism of SiNxHy deposition from NH3-SiH4 plasma. J Electrochem Soc 137(2):614–623

    Article  Google Scholar 

  41. Smith DL (1993) Controlling the plasma chemistry of silicon nitride and oxide deposition from silane. J Vac Sci Technol A 11(4):1843–1850

    Article  ADS  Google Scholar 

  42. Smith DL, Alimonda AS, Chen C-C, Tuan HC (1990) Reduction of charge injection into PECVD SiNxHy by control of deposition chemistry. J Electron Mater 19(1):19–27

    Article  ADS  Google Scholar 

  43. Deane SC, Clough FJ, Milne WI, Powell MJ (1993) The role of the gate insulator in the defect pool model for hydrogenated amorphous silicon thin film transistor characteristics. J Appl Phys 73(6):2895–2901

    Article  ADS  Google Scholar 

  44. Deane SC, Powell MJ, Hughes JR, French ID (1990) Thermal bias annealing evidence for the defect pool in amorphous silicon thin-film transistors. Appl Phys Lett 57(14):1416–1418

    Article  ADS  Google Scholar 

  45. Busta HH, Pogemiller JE, Standley RW, Mackenzie KD (1989) Self-aligned bottom-gate submicrometer-channel-length a-Si:H thin-film transistors. IEEE Trans ED-36(12), 2883–2888

    Google Scholar 

  46. Kuo Y (1992) A self-aligned, tri-layer, a-Si:H thin film transistor prepared from two photo masks. J Electrochem Soc 139:1199–1204

    Article  Google Scholar 

  47. Hirano N, Ikeda N, Hishida S, Kaneko S (1996) A 33 cm-diagonal high-resolution TFT-LCD with fully self-aligned a-Si TFTs. IEICE Trans on Electron, E79-C(8), 1103–1108

    Google Scholar 

  48. Thomasson DB, Jackson TN (1998) Fully self-aligned tri-layer a-Si:H thin-film transistors with deposited doped contact layer. IEEE Elec Dev Lett 19(4):124–126

    Article  ADS  Google Scholar 

  49. Cheng I-C, Kattamis AZ, Long K, Sturm JC, Wagner S (2006) Self-aligned amorphous-silicon TFTs on clear plastic substrates. IEEE Elec Dev Lett 27(3):166–168

    Article  ADS  Google Scholar 

  50. Kim SK, Choi YJ, Cho SI, Cho kS, Jang J (1998) A novel self-aligned coplanar amorphous silicon thin film transistor. SID Symp Digest 29:379–382

    Article  Google Scholar 

  51. Powell MJ, Glasse C, Green PW, French ID, Stemp IJ (2000) An amorphous silicon thin-film transistor with fully self-aligned top gate structure. IEEE Electron Dev Lett 21(3):104–106

    Article  ADS  Google Scholar 

  52. Uchida Y, Nara Y, Matsumura M (1984) Proposed vertical-type amorphous-silicon field-effect transistors. IEEE Electron Device Lett 5(4):105–107

    Article  ADS  Google Scholar 

  53. Kim C-D, Matsumura M (1996) Short-channel amorphous-silicon thin-film transistors. IEEE Trans ED-43(12), 2172–2176

    Google Scholar 

  54. Kim SH, Hur JH, Kim KM, Koo JH, Jang J (2006) Short-channel amorphous-silicon TFT for AMOLED. J Korean Phys Soc 48:S80–S84

    Google Scholar 

  55. Fortunato G, Gentili M, Luciani L, Mariucci L, Pecora A, Petrocco G (1990) Source-drain contact effects in short-channel a-Si:H thin-film transistors . Jpn J Appl Phys 29(12):L2353–L2356

    Article  ADS  Google Scholar 

  56. Fortunato G, Gentili M, Luciani L, Mariucci L, Mattacchini A, Pecora A (1991) Short-channel effects in 0.2 micron channel length a-Si:H thin-film transistors fabricated by electron beam lithography. J Non-Cryst Solids, 137 and 138, 1225–1228

    Google Scholar 

  57. Hekmatshoar B, Cherenack KH, Kattamis AZ, Long K, Wagner S, Sturm JC (2008) Highly stable amorphous-silicon thin-film transistors on clear plastic. Appl Phys Lett 93(3):032103-1–032103-3

    Article  ADS  Google Scholar 

  58. Hekmatshoar B, Cherenack KH, Wagner S, Sturm JC (2008) Amorphous silicon thin-film transistors with DC saturation current half-life of more than 100 years. IEEE IEDM’08, 89–92

    Google Scholar 

  59. Hekmatshoar B, Wagner S, Sturm JC (2009) Trade off regimes of lifetime in amorphous silicon thin-film transistors and a universal lifetime comparison framework. Appl Phys Lett 95(14):143504-1–143504-3

    Article  ADS  Google Scholar 

  60. Powell MJ, van Berkel C, French ID, Nicholls DH (1987) Bias dependence of instability mechanisms in amorphous silicon thin-film transistors. Appl Phys Lett 51(16):1242–1244

    Article  ADS  Google Scholar 

  61. Karim KS, Nathan A, Hack M, Milne WI (2004) Drain-bias dependence of threshold voltage stability of amorphous silicon TFTs. IEEE Electron Dev Lett 25(4):188–190

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing

About this chapter

Cite this chapter

Brotherton, S.D. (2013). Hydrogenated Amorphous Silicon TFT Technology and Architecture. In: Introduction to Thin Film Transistors. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00002-2_5

Download citation

Publish with us

Policies and ethics