Skip to main content

Implantable visual prostheses

  • Chapter
Operative Neuromodulation

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 97/2))

Abstract

Visual impairment and blindness is primarily caused by optic neuropathies like injuries and glaucomas, as well as retinopathies like agerelated macular degeneration (MD), systemic diseases like diabetes, hypertonia and hereditary retinitis pigmentosa (RP). These pathological conditions may affect retinal photoreceptors, or retinal pigment epithelium, or particular subsets of retinal neurons, and in particular retinal ganglion cells (RGCs). The RGCs which connect the retina with the brain are unique cells with extremely long axons bridging the distance from the retina to visual relays within the thalamus and midbrain, being therefore vulnerable to heterogeneous pathological conditions along this pathway. When becoming mature, RGCs loose the ability to divide and to regenerate their accidentally or experimentally injured axons. Consequently, any loss of RGCs is irreversible and results to loss of visual function. The advent of micro- and nanotechnology, and the construction of artificial implants prompted to create visual prostheses which aimed at compensating for the loss of visual function in particular cases. The purpose of the present contribution is to review the considerable engineering expertise that is essential to fabricate current visual prostheses in connection with their functional features and applicability to the animal and human eye. In this chapter, 1) Retinal and cortical implants are introduced, with particular emphasis given to the requirements they have to fulfil in order to replace very complex functions like vision. 2) Advanced work on material research is presented both from the technological and from the biocompatibility aspect as prerequisites of any perspectives for implantation. 3) Ultimately, experimental studies are presented showing the shaping of implants, the procedures of testing their biocompatibility and essential modifications to improve the interfaces between technical devices and the biological environment. The review ends by pointing to future perspectives in the rapidly accelerating process of visual prosthetics and in the increasing hope that restoration of the visual system becomes reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew WF, McCreery DB (eds) (1990) Neural prostheses. Fundamental studies. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  2. Boss JH, Shajrawi I, Aunullah J, Mendes D (1995) The relativity of biocompatibility. A critique of the concept of biocompatibility. Isr J Med Sci 31: 203–209

    PubMed  CAS  Google Scholar 

  3. Cavanagh JB (1970) The proliferation of astrocytes around a needle wound in the rat brain. J Anat 106: 471–487

    PubMed  CAS  Google Scholar 

  4. Cha K, Horch K, Normann RA (1992) Simulation of a phosphenebased visual field: visual acuity in a pixelized vision system. Ann Biomed Eng 20: 439–449

    Article  PubMed  CAS  Google Scholar 

  5. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225: 13–16

    Article  PubMed  CAS  Google Scholar 

  6. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29: 281–289

    PubMed  CAS  Google Scholar 

  7. Ensell G, Banks DJ, Ewins DJ, Balachandran W, Richards PR (1996) Silicon-based microelectrodes for neurophysiology fabricated using a gold metallization/nitride passivation system. J Microelectromech Syst 5: 117–121

    Article  CAS  Google Scholar 

  8. Gekeler F, Kobuch K, Schwahn HN, Stett A, Shinoda K, Zrenner E (2004) Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays. Graefes Arch Clin Exp Ophthalmol 242: 587–596

    Article  PubMed  Google Scholar 

  9. Hambrecht FT (1995) Visual prostheses based on direct interfaces with the visual system. Baillière’s Clin Neurol 4: 147–165

    CAS  Google Scholar 

  10. Heiduschka P, Thanos S (1998) Implantable bioelectric interfaces surfaces for lost nerve functions. Progr Neurobiol 55: 433–461

    Article  CAS  Google Scholar 

  11. Heiduschka P, Romann I, Stieglitz T, Thanos S (2000) Perforated microelectrode arrays omplanted in the regenerating adult central nervous system. Exp Neurol 171: 1–10

    Article  Google Scholar 

  12. Humayun MS, Propst RH, de Juan E Jr, McCormick K, Hickingbotham D (1994) Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 112: 110–116

    PubMed  CAS  Google Scholar 

  13. Humayun MS, de Juan E Jr, Dagnelie G, Greenberg RJ, Propst RH, Phillips DH (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114: 40–46

    PubMed  CAS  Google Scholar 

  14. Kovacs GTA, Storment CW, Rosen JM (1992) Regeneration microelectrode array for peripheral nerve recording and stimulation. IEEE Trans Biomed Eng 39: 893–902

    Article  PubMed  CAS  Google Scholar 

  15. Martin GR, Timpl R (1987) Laminin and other basement membrane components. Ann Rev Cell Biol 3: 57–85

    PubMed  CAS  Google Scholar 

  16. Nisch W, Böck J, Egert U, Hämmerle H, Mohr A (1994) A thin film microelectrode array for monitoring extracellular neuronal activity in vitro. Biosens Bioelectron 9: 737–741

    Article  PubMed  CAS  Google Scholar 

  17. Rizzo JF, Miller S, Denison T, Herndon T, Wyatt JL (1996) Electrically evoked cortical potentials from stimulation of rabbit retina with a microfabricated electrode array. Invest Ophthalmol Vis Sci 37: S707

    Google Scholar 

  18. Santos A, Humayun MS, de Juan E Jr, Greenburg RJ, Marsh MJ, Klock IB, Milam AH (1997) Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol 115: 511–515

    PubMed  CAS  Google Scholar 

  19. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119: 507–522

    Article  PubMed  Google Scholar 

  20. Thanos S, Naskar R, Heiduschka P (1997) Regenerating ganglion cell axons in the adult rat establish retinofugal topography and restore visual function. Exp Brain Res 114: 483–491

    Article  PubMed  CAS  Google Scholar 

  21. Volcker M, Shinoda K, Sachs H, Gmenier H, Schwarz T, Kohler K, Inhoffen W, Bartz-Schmidt KU, Zrenner E, Gekeler F (2004) In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescence angiography. Graefe’s Arch Clin Exp Ophthalmol 242: 792–799

    Article  Google Scholar 

  22. Wyatt Jl, Rizzo JF (1996) Ocular implants for the blind. IEEE Spectrum 33: 47–53

    Article  Google Scholar 

  23. Zrenner E, Miliczek K-D, Gabel VP, Graft HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29: 269–280

    Article  PubMed  CAS  Google Scholar 

  24. Zrenner E (2002) Will retinal implants restore vision? Science 295: 1022–1025

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solon Thanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag/Wien

About this chapter

Cite this chapter

Thanos, S., Heiduschka, P., Stupp, T. (2007). Implantable visual prostheses. In: Sakas, D.E., Simpson, B.A. (eds) Operative Neuromodulation. Acta Neurochirurgica Supplements, vol 97/2. Springer, Vienna. https://doi.org/10.1007/978-3-211-33081-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-33081-4_53

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-33080-7

  • Online ISBN: 978-3-211-33081-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics