Skip to main content

Part of the book series: Progress in Drug Research ((PDR,volume 61))

  • 470 Accesses

Abstract

During the last decade, several peptides have been described, such as SynB vectors [1] penetratin and Tat [2, 3] that allow the intracellular delivery of polar, biologically active compounds in vitro and in vivo [2, 4]. These peptides, belonging to various families, are heterogeneous in size (10 to 18 amino acids) and sequence (Tab. 1). However, all these peptides possess multiple positive charges and some of them share common features such as important theoretical hydrophobicity and helical moment (reflecting the peptide amphipathicity), the ability to interact with lipid membrane and to adopt a significant secondary structure upon binding to lipids. The facility with which they cross the membrane into the cytoplasm even when carrying hydrophilic molecules has provided a new and powerful tool in biomedical research [3, 4]. An even more difficult task was to use these peptide vectors to deliver drugs across the blood-brain barrier (BBB). This chapter emphasizes the use of peptide vectors for brain delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BBB:

blood-brain barrier

B-Pc:

benzyl-penicillin

CNS:

central nervous system

CSF:

cerebrospinal fluid

β-Gal:

β-galactosidase

i.v.:

intravenous

kin :

transfer coefficient

NLS:

nuclear localisation signal

P-gp:

P-glycoprotein

PG-1:

Protegrin 1

References

  1. Temsamani J, Rousselle, C, Rees AR, Scherrmann JM (2001) Vector-Mediated drug delivery to the brain. Expert Opin Biol Ther 1: 773–782

    Article  PubMed  CAS  Google Scholar 

  2. Derossi D, Chassaing G, Prochiantz A (1998) Trojan peptides: the penetratin system for intracellular delivery. Trends Cell Biol 8: 84–87

    PubMed  CAS  Google Scholar 

  3. Langel U (ed) (2002) Cell penetrating peptides. Processes and applications. CRC Press, Boca Raton

    Google Scholar 

  4. Drin G, Rousselle C, Scherrmann JM, Rees AR, Temsamani J (2002) Peptide delivery to the brain via adsorptive-mediated endocytosis: Advances with SynB vectors. AAPS PharmSci 4, article 26

    Google Scholar 

  5. Harwig SS, Swiderek KM, Lee TD, Lehrer RI (1995) Determination of disulphide bridges in PG-2, an antimicrobial peptide from porcine leukocytes. J Pept Sci 1: 207–215

    Article  PubMed  CAS  Google Scholar 

  6. Drin G, Temsamani J (2002) Translocation of protegrin I through phospholipid membranes: role of peptide folding. Biochim Biophys Acta 1559: 160–170

    Article  PubMed  CAS  Google Scholar 

  7. Aumelas A, Mangoni M, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Synthesis and solution structure of the antimicrobial peptide protegrin-1. Eur J Biochem 237: 575–583

    Article  PubMed  CAS  Google Scholar 

  8. Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Change in membrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett 383: 93–98

    Article  PubMed  CAS  Google Scholar 

  9. Sokolov Y, Mirzabekov T, Martin DW, Lehrer RI, Kagan BL (1999) Membrane channel formation by antimicrobial protegrins. Biochim Biophys Acta 1420: 23–29

    Article  PubMed  CAS  Google Scholar 

  10. Prochiantz A (1999) Homeodomain-derived peptides. In and out of the cells. Ann NY Acad Sci 886: 172–179

    Article  PubMed  CAS  Google Scholar 

  11. Vivès E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272: 16010–16017

    Article  PubMed  Google Scholar 

  12. Rousselle C, Clair P, Lefauconnier JM, Kaczorek M, Scherrmann JM, Temsamani J (2000) New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol Pharmacol 57: 679–686

    PubMed  CAS  Google Scholar 

  13. Rousselle C, Smirnova M, Clair P, Lefauconnier JM, Chavanieu A, Calas B, Scherrmann JM, Temsamani J (2001) Enhanced delivery of doxorubicin into the brain via a peptidevector-mediated strategy: saturation kinetics and specificity. J Pharmacol Exp Ther 296: 124–131

    PubMed  CAS  Google Scholar 

  14. Mazel M, Clair P, Rousselle C, Vidal P, Scherrmann JM, Mathieu D, Temsamani J (2001) Doxorubicin-peptide conjugates overcome multidrug resistance. Anti-Cancer Drugs 12: 107–116

    Article  PubMed  CAS  Google Scholar 

  15. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62: 385–427

    Article  PubMed  CAS  Google Scholar 

  16. Tsuji A (1998) P-glycoprotein-mediated efflux transport of anticancer drugs at the bloodbrain barrier. Ther Drug Monit 20: 588–590

    Article  PubMed  CAS  Google Scholar 

  17. Bolton SJ, Jones DN, Darker JG, Eggleston DS, Hunter AJ, Walsh FS (2000) Cellular uptake and spread of the cell-permeable peptide penetratin in adult rat brain. Eur J Neurosci 12: 2847–2855

    Article  PubMed  CAS  Google Scholar 

  18. Rousselle C, Clair P, Temsamani J, Scherrmann JM (2002) Improved Brain Delivery of Benzylpenicillin with a Peptide-Vector-Mediated Strategy. J Drug Target 10: 309–315

    Article  PubMed  CAS  Google Scholar 

  19. Norrby, R. (1980) Penetration of antimicrobial agents into cerebrospinal fluid: Pharmacokinetic and clinical aspects. In: JH Wood (ed): Neurobiology of Cerebrospinal Fluid. Plenum Press, New York, 449–463

    Chapter  Google Scholar 

  20. Dixon RL., Owens ES, Rall, DP (1969) Evidence of active transport of benzy1-14C-penicillin from cerebrospinal fluid to blood. J Pharm Sci 58: 1106–1109

    Article  PubMed  CAS  Google Scholar 

  21. Schroeder U, Schroeder H, Sabel BA (2000) Body distribution of 3H-labelled dalargin bound to poly(butyl cyanoacrylate) nanoparticles after i.v. injections to mice. Life Sci 66: 495–502

    Article  PubMed  CAS  Google Scholar 

  22. Kalenikova EI, Dmitrieva OF, Korobov NV,Zhukovskii SV, Tishchenko VA (1988) Pharmacokinetics of dalargin. Vopr Med Khim 34: 75–83

    PubMed  CAS  Google Scholar 

  23. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. (1995) Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674: 171–174

    Article  PubMed  CAS  Google Scholar 

  24. Schroeder U, Sommerfeld P, Ulrich S, Sabel BA (1998) Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci 87: 1305–1307

    Article  PubMed  CAS  Google Scholar 

  25. Schwarze SR, Ho A, VoceroAkbani A, Dowdy SF (1999) In vivo protein transduction of a biologically active protein in the mouse. Science 285: 1569–1572

    Article  PubMed  CAS  Google Scholar 

  26. Hardebo JE, Kahrstrom J (1985) Endothelial negative surface charge areas, and blood-brain barrier function. Acta Physiol Scand 125: 495–499

    Article  PubMed  CAS  Google Scholar 

  27. Vordbrodt AW (1988) Ultrastructural cytochemistry of blood-brain barrier endothelia. Prog Histochem Cytochem 18: 1–99

    Google Scholar 

  28. Bar RS, DeRose A, Sandra A, Peacock ML, Owen WG (1983) Insulin binding to microvascular endothelium of intact heart: A kinetic and morphometric analysis. Am J Physiol 244: 477–482

    Google Scholar 

  29. Virgintino D, Monaghan P, Robertson D, Errede M, Bertossi M, Ambrosi G, Roncali L (1997) An immunohistochemical and morphometric study on astrocytes and microvasculature in the human cerebral cortex. Histochem J 29: 655–660

    Article  PubMed  CAS  Google Scholar 

  30. Bertossi M, Virgintino D, Maiorano E, Occhiogrosso M, Roncali L (1997) Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct Pathol 21: 41–49

    Article  PubMed  CAS  Google Scholar 

  31. Walus LR, Pardridge WM, Starzyk RM, Friden PM (1996) Enhanced uptake of rsCD4 across the rodent and primate blood-brain barrier after conjugation to anti-transferrin receptor antibodies. J Pharmacol Exp Ther 277: 1067–1075

    PubMed  CAS  Google Scholar 

  32. Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B, Starzyk RM (1991) Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc Nati Acad Sci USA 88: 4771–4775

    Article  CAS  Google Scholar 

  33. Friden PM, Walus LR, Watson P, Doctrow SR, Kozarich JW, Backman C, Bergman H, Hoffer B, Bloom F, Granholm AC (1993) Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science 259: 373–377

    Article  PubMed  CAS  Google Scholar 

  34. Letvin NL, Chalifoux LV, Reimann KA, Ritz J, Schlossman SF, Lambert JM (1986) In vivo administration of lymphocyte-specific monoclonal antibodies in nonhuman primates. In vivo stability of disulfide-linked immunotoxin conjugates. J Clin Invest77: 977–984

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Temsamani, J., Scherrmann, JM. (2003). Peptide vectors as drug carriers. In: Prokai, L., Prokai-Tatrai, K. (eds) Peptide Transport and Delivery into the Central Nervous System. Progress in Drug Research, vol 61. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8049-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8049-7_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9420-3

  • Online ISBN: 978-3-0348-8049-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics