Skip to main content

Gene Therapy of Familial Hypercholesterolemia

  • Chapter
Gene Therapy
  • 251 Accesses

Abstract

Familial hypercholesterolemia (FH) is one of the most common autosomal dominant diseases which affects about 1 in 500 individuals, in the heterozygous form. The reason for elevated serum cholesterol levels in these patients is a defect of the low density lipoprotein (LDL) receptor gene. The absence of functional LDL-receptors in the liver prevents clearance of LDL from the circulation, leaving serum cholesterol levels constantly elevated. In heterozygous carriers total serum cholesterol ranges between 260–500 mg/100 ml (2–4 fold increased LDL-cholesterol compared with normal patients). Patients are at high risk for coronary artery disease (CAD) and about 85% up to the age of 60 experience myocardial infarction. Heterozygous FH patients account for about 5% in the whole group of myocardial infarctions. There are several sites for pharmacological intervention in the heterozygous group but only a few therapeutic options are available for the treatment of homozygous FH, which occurs only once in a million individuals. These patients suffer from serum cholesterol levels between 500–1200 mg/100 ml (6–8 fold increased LDL-cholesterol). They develop severe atherosclerosis, experience myocardial infarctions during childhood and have a markedly reduced life expectancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Grossman, M., Raper, S. E., Kozarsky, K., Stein, E. A., Engelhardt, J. E, Muller, D., Lupien, P. J. and Wilson, J. M. (1994) Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolemia. Nat. Genet. 6: 335–341.

    Article  PubMed  CAS  Google Scholar 

  2. Wilson, J. M. et al. (1992) Clincal Protocol: Ex vivo gene therapy of familial hypercholesterolemia. Hum. Gene Ther. 3 (2): 179–22.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, W. (1990) The ADA human gene therapy protocol. Hum. Gene Ther. 4 (4): 521–527.

    Google Scholar 

  4. Blaese R.M. et al. (1990) Clinical Protocol: Treatment of severe combined immune deficiency (SCID) due to adenosine deaminase (ADA) with autologues lymphocytes transduced with human ADA gene. Hum. Gene Ther. 1 (3): 327–362.

    Article  Google Scholar 

  5. Grossman, M., Rader, D. J., Muller DWM., Kolansky, D. M., Kozarsky, K., Clark, B. J., Stein, E. A., Lupien, P. J., Brewer, H. B., Raper, S. E., Wilson, J. M. (1995) A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolemia. Nat. Med. 1 (11): 1148–1154.

    Google Scholar 

  6. Goldstein, J. L., Brown, M. S. (1984) Progress in understanding the LDL-receptor and HMD-CoA reductase, two membrane proteins that regulate the plasma cholesterol. J. Lipid Res. 25: 1450–61.

    PubMed  CAS  Google Scholar 

  7. Koletzko, B., Kupke, I., Wendel, U. (1992) Treatment of hypercholesterolemia in children and adolescents. Acta Paediatr. 81: 682–5.

    Article  PubMed  CAS  Google Scholar 

  8. Becker, M., Staab, D., Von Bergmann, K. (1992) Long term treatment of severe familial hypercholesterolemia in children; effect of sitosterol and bezafibrate. Pediatrics 89: 138–42.

    PubMed  CAS  Google Scholar 

  9. Bilheimer, D., Goldstein, J. L., Grundy, S., Starzl, T. (1984) Liver transplantation to provide low density lipoprotein receptors and lower plasma cholesterol in a child with homozygous familial hypercholesterolemia. N. Engl. J. Med. 296: 1658–1664.

    Article  Google Scholar 

  10. Starzl, T. et al. (1983) Portocaval shunts in patients with familial hypercholesterolemia. Ann. Surg. 198: 273–283.

    Article  PubMed  CAS  Google Scholar 

  11. Deckelbaum, R., Lees, R., Small, D., Hedberg, S., Grundy, S. (1977) Failure of complete bile diversion and oral bile acid therapy in the treatment of homozygous familial hypercholesterolemia. N. Engl. J. Med. 296: 465–470.

    Article  PubMed  CAS  Google Scholar 

  12. Wagner, E., Plank, C., Zatloukal, K., Cotten, M., Birnstiel, M. L. (1992) Influenza virus haemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: towards a synthetic virus-like gene-transfer vehicle. Proc. Natl. Acad. Sci. USA 89: 7934–7938.

    Article  PubMed  CAS  Google Scholar 

  13. Russel, D. W., Berger, M. S., Miller, A. D. (1995) The effects of human serum and cerebrospinal fluid on retroviral vectors and packaging cell lines. Hum. Gene Ther. 6: 635–41.

    Article  Google Scholar 

  14. Bukrinsky, M. I., Haggerty, S., Dempsey, M. P., Sharova, N., Adzubei, A., Spitz, L., Lewis, P., Goldfarb, D., Emerman, M., Stevenson, M. (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365: 666–669.

    Article  PubMed  CAS  Google Scholar 

  15. Brown, M. S., Goldstein, J. L., Havel, R., Steinberg, D. (1994) Gene therapy to cholesterol. Nat. Genet. 7: 349–50.

    Article  PubMed  CAS  Google Scholar 

  16. Yang, Y., Nunes, E, Berencsi, K., Gönczöl, E., Engelhardt, J. E, Wilson, J. M. (1994) Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat. Genet. 7: 362–369.

    Article  PubMed  CAS  Google Scholar 

  17. Barr, D., Tubb, J., ferguson, D., Scaria, A., Lieber, A., Wilson, C., Perkins, H. J., Kay, M. A. (1995) Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: comparison between immunocompetent and immunodeficient inbred strains. Gene Ther. 2: 151–155.

    PubMed  CAS  Google Scholar 

  18. Kremer, E. J., Perricaudet, M. (1995) Adenovirus and adeno-associated virus mediated gene transfer. Brit. Med. Bull. 51 (1): 31–44.

    PubMed  CAS  Google Scholar 

  19. Herz, J., Gerard, R. (1993) Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc. Natl. Acad. Sci. USA 90: 2812–2816.

    Article  PubMed  CAS  Google Scholar 

  20. Mathias, P., Wickham, T., Moore, M., Nemerow, G. (1994) Multiple adenovirus serotypes use alpha v integrins for infection. J. Virol. 1994: 6811–6814.

    Google Scholar 

  21. Kass-Eisler, A., Falck-Pederson, E., Elfenbein, D., Alvira, M., Buttrick, P., Leinwand, L. (1994) The impact of developemental stage, route of administration and the immune system on adenovirus gene transfer. Gene Ther. 1: 395–402.

    PubMed  CAS  Google Scholar 

  22. Huard, J., Lochmüller, H., Acsadi, G., Massie, B., Karpati, G. (1995) The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther. 2: 107–115.

    PubMed  CAS  Google Scholar 

  23. Li, J., Fang, B., Eisensmith, C., Hong, X., Li, C., Nasonkin, I., Woo SC (1995) In vivo gene therapy for hyperlipidemia: Phenotypic correction in watanabe rabbits by hepatic delivery of the rabbit LDL receptor gene. J. Clin. Invest. 95: 768–773.

    CAS  Google Scholar 

  24. Horwitz, M. (1990) Adenoviridae and their replication. In: B. N. Fields and D. M. Knipe (eds), Virology. Raven Press, New York, pp. 1679–1721.

    Google Scholar 

  25. McGrory, W., Bautista, D., Graham, E (1988) A simple technique for the rescue of early region 1 mutations into infectious human adenovvirus type 5. Virology 163: 614–617.

    Article  PubMed  CAS  Google Scholar 

  26. Bett, A., Haddara, W., Prevec, L., Graham, E (1994) An efficient and flexible system for the construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc. Natl. Acad. Sci. USA 91: 8802–8806.

    Article  PubMed  CAS  Google Scholar 

  27. Yang, Y., Ertl, H. C. J., Wilson, J. M. (1994) MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1 deleted recombinant adenovirusese. Immunity 1: 433–442.

    Article  PubMed  CAS  Google Scholar 

  28. Fang, B., Eisensmith, R., Wang, H., Kay, M., Cross, R., Landen, C., Gordon, G., Bellinger, D., Read, M., Hu, P., Brinkhous, K., Woo SC (1995) Gene therapy for Hemophilia B: Host immunosuppression prolongs the therapeutic effect of adenovirusmediated Factor IX expression. Hum. Gene Ther. 6: 1039–1044.

    Article  PubMed  CAS  Google Scholar 

  29. Kay, M. A., Holterman, A., Meuse, L., Gown, A., Ochs, H. D., Linsley, P. S., Wilson, C. B. (1995) Long-term hepatic adenovirus-mediated gene expression in mice following CTLA 4 Ig administration. Nat. Genet. 11: 191–197.

    Article  PubMed  CAS  Google Scholar 

  30. Dähllof, B., Wallin, M., Kvist, S. (1991) The endoplasmatic reticulum retention signal of the E3/19 K protein of Adenovirus 2 is microtubule binding. J. Biol. Chem. 266: 1804–1808.

    PubMed  Google Scholar 

  31. Burgert, H., Kvist, S. (1987) The E3/19K protein of adenovirus type 2 binds to the domains of histocompatibility antigens required for CTL recognition. EMBO J. 6: 2019–2026.

    PubMed  CAS  Google Scholar 

  32. Tanaka, Y., Tevethia, S. (1988) Differential effect of adenovirus 2 E3/19K glycoprotein on the expression of H-2Kb–and H-2Db-restricted SV 40-specific CTL-mediated lysis. Virology 165: 357–366.

    Article  PubMed  CAS  Google Scholar 

  33. Rawle, E, Tollefson, A., Wold, W. and Gooding, L. (1989) Mouse anti-adenovirus cytotoxic T-Lymphocytes. Inhibition of lysis by E3 gp 19K but not E3 14.7K. J. Immunol. 143: 2031–2037.

    PubMed  CAS  Google Scholar 

  34. Cox, J., Yewdell, J., Eisenlohr, P. and Bennik, J. (1990) Antigen presentation requires transport of MHC class I molecules from the endoplasmatic reticulum. Science 247: 715–718.

    Article  PubMed  CAS  Google Scholar 

  35. Severinsson, L., Martens, I. and Peterson, P. (1986) Differential association between two human MHC class I antigens and an adenoviral glycoprotein. J. Immunol. 137: 1003–1009.

    PubMed  CAS  Google Scholar 

  36. Gooding, L., Elmore, L., Tollefson, A., Brady, H., Wold, W. (1988) A 14.7 K protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 53: 341–346.

    Article  PubMed  CAS  Google Scholar 

  37. Gooding, L., Sofola, I., Tollefson, A., Duerksen-Hughes, P., Wold, W. (1990) The adenovirus E3–14.7 K protein is a general inhibitor of tumor necrosis factor-mediated cytolysis. Immunology 145: 3080–3086.

    CAS  Google Scholar 

  38. Gooding, L., Ranheim, T., Tollefson, A., Aquino, L., Duerksen-Hughes, P., Horton, T., Wold, W. (1991) The 10.4 and 14.5 dalton proteins encided by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor-mediated cytolysis. J. Virol. 65 (8): 4114–4123.

    PubMed  CAS  Google Scholar 

  39. Lee, M., Abina, M., Haddada, H., Perricaudet, M. (1995) The constituive expression of the immunomodulatory gp 19K protein in E1-, E3- adenoviral vectors strongly reduces the host cytotoxic T cell response against the vector. Gene Ther. 2: 256–262.

    PubMed  CAS  Google Scholar 

  40. Yang, Y., Nunes, E, Berencsi, K., Gönczol, E., Engelhardt, J., Wilson, J. M. (1994) Inactivation of Eta in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat. Genet. 7: 362–369.

    Article  PubMed  CAS  Google Scholar 

  41. Tribouley, C., Lutz, P., Staub, A., Kedinger, C. (1994) The product of the adenovirus intermediate gene IVa2 is a transcriptional activator of the major late promoter. J. Virol. 68 (7): 4450–4457.

    PubMed  CAS  Google Scholar 

  42. Watanabe, Y., Itpo, T., Shiomi, M. (1985) The effect of selective breeding on the developement of coronary artherosclerosis in WHHL rabbits. An animal model for familial hypercholesterolemia. Artherosclerosis 56: 71–97.

    Google Scholar 

  43. Wold, W., Gooding, L. (1991) Region E3 of adenovirus: A cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184: 1–8.

    Article  PubMed  CAS  Google Scholar 

  44. Ishibashi, S., Brown, M. S., Goldstein, J. L., Gerard, R., Hammer, R., Herz, J. (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92: 883–893.

    Article  PubMed  CAS  Google Scholar 

  45. Gilboa E. (1990) Retroviral gene transfer: Applications to human therapy. In: The biology of hematopoesis. Wiley-Liss, Inc., pp. 301–311.

    Google Scholar 

  46. Ferry, N., Duplessis, O., Houssin, D. et al. (1991) Retroviral-mediated gene transfer into

    Google Scholar 

  47. hepatocytes in vivo. Proc. Natl. Acad. Sci. USA 88: 8377–8381.

    Google Scholar 

  48. Kay, M. A., Li, Q., Liu, T. J. et al. (1992) Hepatic gene therapy: persistent expression of human alpha 1-antitrypsin in mice after direct gene delivery in vivo. Hum. Gene Ther. 3: 641–647.

    Article  CAS  Google Scholar 

  49. Cardoso, J. E., Branchereau, S., Jeyaraj et al. (1993) In situ retrovirus-mediated gene transfer into dog liver. Hum. Gene Ther. 4: 411–418.

    CAS  Google Scholar 

  50. Brancherau, S., Calise, D., Ferry, N. (1990) Factors influencing retroviral-mediated gene transfer into hepatocytes in vivo. Hum. Gene Ther. 5: 803–808.

    Article  Google Scholar 

  51. Kay, M. A., RothenbergS, Landen, C. N. et al. (1993) In vivo gene therapy of hemophilia B: Sustained partial correction in factor IX-deficient dogs. Science 262: 117–119.

    CAS  Google Scholar 

  52. Lieber, A., Vrancken Peeters J. E T. E D., Gowen, A., Perkins, J., Kay, M. A. (1995) A modified urokinase plasminogen activator induces liver regeneration without bleeding. Hum. Gene Ther. 6: 1029–1037.

    Article  PubMed  CAS  Google Scholar 

  53. Bubrinsky MI, Haggerty S, Dempsy MP et al. (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365: 666–669.

    Article  Google Scholar 

  54. Miyanohara, A., Yee, J. K., Bouic, K., La Porte, P., Friedmann, T. (1995) Efficient in vivo transduction of the neonatal liver with pseudotyped retroviral vectors. Gene Ther. 2: 138–142.

    PubMed  CAS  Google Scholar 

  55. Yeh, P., Dedieu, J. F., Orsini, C., Vigne, E., Denette, P., Perricaudet, M. (1996) Efficient dual transcomplementation of adenovirus El and E4 regions from a 293-derived cell line expressiong a minimal E4 functional unit. J. Virol. 70: 559–565.

    PubMed  CAS  Google Scholar 

  56. Samulski, R. J., Zhu, X., Xiao, X. et al. (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J. 10(12): 3941–50 (erratum in: EM-BO J. 1992, 11(3): 1228).

    Google Scholar 

  57. Muzyczka, N. (1992) Use of adeno-associated virus as ageneral transduction vector for mammalian cells. Curr. Top. Microbiol. Immunol. 158 (97): 97–129.

    Article  PubMed  CAS  Google Scholar 

  58. Kremer, E. J., Perricaudet, M. (1995) Adenovirus and adeno-associated virus mediated gene transfer. Brit. Med. Bull. 51 (1): 31–44.

    PubMed  CAS  Google Scholar 

  59. Frenkel N, Singer O, Kwong AD. Minireview: The herpes simplex virus amplicon–a versatile defective virus vector. Gene Ther. 1: 40–46.

    Google Scholar 

  60. Dobson, A. T., Sedarati, E, Devi-Rao, G. et al. (1989) Identification of the latency associated transcript promoter by expression of rabbit beta-blobin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J. Virol. 63: 3844–3851.

    PubMed  CAS  Google Scholar 

  61. Ho DY, Mocarski ES (1989) Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc. Natl. Acad. Sci. USA 86: 7596–7600.

    Article  PubMed  CAS  Google Scholar 

  62. Goins, W. F., Sternberg, L. R., Croen, K. D. et al. (1994) A novel latency-active promoter is contained within the herpes simplex virus type 1 UL flanking repeats. J. Virol. 68: 2239–2252.

    PubMed  CAS  Google Scholar 

  63. Miyanohara, A., Johnson, P. A., Elam, R. L. et al. (1992) Direct gene transfer to the liver with herpes simplex virus type I vectors: transient production of physiologically relevant levels of circulating factor IX. New. Biol. 4: 238–246.

    PubMed  CAS  Google Scholar 

  64. Cotten, M., Wagner, E., Zatloukal, K., Phillips, S., Curiel, D., Birnstil, J. (1992) High-efficiency receptor-mediated delivery of small and large (48 kb) gene constructs using the endosome-disruption activity of defective or chemically-inactivated adenovirus particles. Proc. Natl. Acad. Sci. USA 89: 6094–6098.

    Article  PubMed  CAS  Google Scholar 

  65. Cotten, M., Wagner, E. (1993) Non-viral approaches to gene therapy. Curr. Opin. Biotechnol. 4: 705–710.

    Article  PubMed  CAS  Google Scholar 

  66. Schofield, J. P., Caskey, C. T. (1995) Non-viral approaches to gene therapy Brit. Med. Bull. 51 (1): 56–71.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Cichon, G., Strauss, M. (1999). Gene Therapy of Familial Hypercholesterolemia. In: Blankenstein, T. (eds) Gene Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7011-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7011-5_11

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7013-9

  • Online ISBN: 978-3-0348-7011-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics