Skip to main content

Activation of the TCR Complex by Peptide-MHC and Superantigens

  • Chapter
  • First Online:
T Lymphocytes as Tools in Diagnostics and Immunotoxicology

Abstract

Drug hypersensitivity reactions are immune mediated, with T lymphocytes being stimulated by the drugs via their T-cell antigen receptor (TCR). In the nonpathogenic state, the TCR is activated by foreign peptides presented by major histocompatibility complex molecules (pMHC). Foreign pMHC binds with sufficient affinity to TCRαβ and thereby elicits phosphorylation of the cytoplasmic tails of the TCRαβ-associated CD3 subunits. The process is called TCR triggering. In this review, we discuss the current models of TCR triggering and which drug properties are crucial for TCR stimulation. The underlying molecular mechanisms mostly include pMHC-induced exposure of the CD3 cytoplasmic tails or alterations of the kinase-phosphatase equilibrium in the vicinity of CD3. In this review, we also discuss triggering of the TCR by small chemical compounds in context of these general mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JJ, Narayanan S, Liu B, Birnbaum ME, Kruse AC, Bowerman NA, Chen W, Levin AM, Connolly JM, Zhu C, Kranz DM, Garcia KC (2011) T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35:681–93

    Article  PubMed  CAS  Google Scholar 

  • Aivazian D, Stern LJ (2000) Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat Struct Biol 7:1023–6

    Article  PubMed  CAS  Google Scholar 

  • Alarcon B, Gil D, Delgado P, Schamel WW (2003) Initiation of TCR signaling: regulation within CD3 dimers. Immunol Rev 191:38–46

    Article  PubMed  CAS  Google Scholar 

  • Alarcon B, Swamy M, van Santen HM, Schamel WWA (2006) T-cell antigen-receptor stoichiometry: pre-clustering for sensitivity. EMBO Rep 7:490–5

    Article  PubMed  CAS  Google Scholar 

  • Aleksic M, Dushek O, Zhang H, Shenderov E, Chen JL, Cerundolo V, Coombs D, van der Merwe PA (2010) Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 32:163–74

    Article  PubMed  CAS  Google Scholar 

  • Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, Barash U, Supper E, Shpilka T, Minis A, Kaempfer R (2011) Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol 9:e1001149

    Article  PubMed  CAS  Google Scholar 

  • Ashwell JD, Klausner RD (1990) Genetic and mutational analysis of the T-cell antigen receptor. Annu Rev Immunol 8:139–67

    Article  PubMed  CAS  Google Scholar 

  • Boniface JJ, Rabinowitz JD, Wülfing C, Hampl J, Reich Z, Altman JD, Kantor RM, Beeson C, McConnell HM, Davis MM (1998) Initiation of signal transduction through the T cell receptor requires the peptide multivalent engagement of MHC ligands. Immunity 9:459–66

    Article  PubMed  CAS  Google Scholar 

  • Bueno C, Lemke CD, Criado G, Baroja ML, Ferguson SS, Nur-Ur Rahman AK, Tsoukas CD, McCormick JK, Madrenas J (2006) Bacterial superantigens bypass Lck-dependent T cell receptor signaling by activating a Ga11-dependent, PLC-b-mediated pathway. Immunity 25:67–78

    Article  PubMed  CAS  Google Scholar 

  • Bueno C, Criado G, McCormick JK, Madrenas J (2007) T cell signalling induced by bacterial superantigens. Chem Immunol Allergy 93:161–80

    Article  PubMed  CAS  Google Scholar 

  • Chang TW, Kung PC, Gingras SP, Goldstein G (1981) Does OKT3 monoclonal antibody react with an antigen-recognition structure on human T cells? Proc Natl Acad Sci U S A 78:1805–8

    Article  PubMed  CAS  Google Scholar 

  • Choudhuri K, van der Merwe PA (2007) Molecular mechanisms involved in T cell receptor triggering. Semin Immunol 19:255–61

    Article  PubMed  CAS  Google Scholar 

  • Choudhuri K, Wiseman D, Brown MH, Gould K, van der Merwe PA (2005) T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436:578–82

    Article  PubMed  CAS  Google Scholar 

  • Cochran JR, Cameron TO, Stern LJ (2000) The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12:241–50

    Article  PubMed  CAS  Google Scholar 

  • Davis SJ, van der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7:803–9

    Article  PubMed  CAS  Google Scholar 

  • DeFord-Watts LM, Dougall DS, Belkaya S, Johnson BA, Eitson JL, Roybal KT, Barylko B, Albanesi JP, Wulfing C, Van Oers NS (2011) The CD3 zeta subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J Immunol 186:6839–47

    Article  PubMed  CAS  Google Scholar 

  • Dushek O, Aleksic M, Wheeler RJ, Zhang H, Cordoba SP, Peng YC, Chen JL, Cerundolo V, Dong T, Coombs D, van der Merwe PA (2011) Antigen potency and maximal efficacy reveal a mechanism of efficient T cell activation. Sci Signal 4:ra39

    Article  PubMed  Google Scholar 

  • Fraser JD, Proft T (2008) The bacterial superantigen and superantigen-like proteins. Immunol Rev 225:226–43

    Article  PubMed  CAS  Google Scholar 

  • Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC (1996) Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384:134–41

    Article  PubMed  CAS  Google Scholar 

  • Garcia KC (2012) Reconciling views on T cell receptor germline bias for MHC. Trends Immunol 33:429–36

    Article  PubMed  CAS  Google Scholar 

  • Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, Wilson IA (1996) An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274:209–19

    Article  PubMed  CAS  Google Scholar 

  • Gil D, Schamel WW, Montoya M, Sanchez-Madrid F, Alarcon B (2002) Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109:901–12

    Article  PubMed  CAS  Google Scholar 

  • Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM (2002) Direct observation of ligand recognition by T cells. Nature 419:845–9

    Article  PubMed  CAS  Google Scholar 

  • Iwashima M, Irving BA, van Oers NS, Chan AC, Weiss A (1994) Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263:1136–9

    Article  PubMed  CAS  Google Scholar 

  • James JR, Vale RD (2012) Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487:64–9

    Article  PubMed  CAS  Google Scholar 

  • Kaye J, Janeway CA Jr (1984) The Fab fragment of a directly activating monoclonal antibody that precipitates a disulfide-linked heterodimer from a helper T cell clone blocks activation by either allogeneic Ia or antigen and self-Ia. J Exp Med 159:1397–412

    Article  PubMed  CAS  Google Scholar 

  • Kim PW, Sun ZY, Blacklow SC, Wagner G, Eck MJ (2003) A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science 301:1725–8

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Takeuchi K, Sun ZY, Touma M, Castro CE, Fahmy A, Lang MJ, Wagner G, Reinherz EL (2009) The alphabeta T cell receptor is an anisotropic mechanosensor. J Biol Chem 284:31028–37

    Article  PubMed  CAS  Google Scholar 

  • Krishna S, Benaroch P, Pillai S (1992) Tetrameric cell-surface MHC class I molecules. Nature 357:164–7

    Article  PubMed  CAS  Google Scholar 

  • Krogsgaard M, Li QJ, Sumen C, Huppa JB, Huse M, Davis MM (2005) Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434:238–43

    Article  PubMed  CAS  Google Scholar 

  • Kuhns MS, Davis MM (2012) TCR signaling emerges from the sum of many parts. Front Immunol 3:159

    Article  PubMed  CAS  Google Scholar 

  • Lillemeier BF, Mortelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11:90–6

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Gibbs JS, Hickman HD, David A, Dolan BP, Jin Y, Kranz DM, Bennink JR, Yewdell JW, Varma R (2012) Endogenous viral antigen processing generates peptide-specific MHC class I cell-surface clusters. Proc Natl Acad Sci U S A 109:15407–12

    Article  PubMed  CAS  Google Scholar 

  • Ma Z, Finkel TH (2010) T cell receptor triggering by force. Trends Immunol 31:1–6

    Article  PubMed  Google Scholar 

  • McKeithan TW (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci U S A 92:5042–6

    Article  PubMed  CAS  Google Scholar 

  • Minguet S, Schamel WWA (2008) A permissive geometry model for TCR-CD3 activation. Trends Biochem Sci 33:51–7

    Article  PubMed  CAS  Google Scholar 

  • Minguet S, Swamy M, Alarcon B, Luescher IF, Schamel WW (2007) Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26:43–54

    Article  PubMed  CAS  Google Scholar 

  • Molnar E, Deswal S, Schamel WW (2010) Pre-clustered TCR complexes. FEBS Lett 584:4832–7

    Article  PubMed  CAS  Google Scholar 

  • Molnar E, Swamy M, Holzer M, Beck-Garcia K, Worch R, Thiele C, Guigas G, Boye K, Luescher IF, Schwille P, Schubert R, Schamel WW (2012) Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering. J Biol Chem 287:42664–74

    Article  PubMed  CAS  Google Scholar 

  • Mustelin T, Alonso A, Bottini N, Huynh H, Rahmouni S, Nika K, Louis-dit-Sully C, Tautz L, Togo SH, Bruckner S, Mena-Duran AV, al-Khouri AM (2004) Protein tyrosine phosphatases in T cell physiology. Mol Immunol 41:687–700

    Article  PubMed  CAS  Google Scholar 

  • Petersson K, Forsberg G, Walse B (2004) Interplay between superantigens and immunoreceptors. Scand J Immunol 59:345–55

    Article  PubMed  CAS  Google Scholar 

  • Reth M (1989) Antigen receptor tail clue. Nature 338:383

    Article  PubMed  CAS  Google Scholar 

  • Risueno RM, Gil D, Fernandez E, Sanchez-Madrid F, Alarcon B (2005) Ligand-induced conformational change in the T-cell receptor associated with productive immune synapses. Blood 106:601–8

    Article  PubMed  CAS  Google Scholar 

  • Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–66

    Article  PubMed  CAS  Google Scholar 

  • Saline M, Rödström KE, Fischer G, Orekhov VY, Karlsson BG, Lindkvist-Petersson K (2010) The structure of superantigen complexed with TCR and MHC reveals novel insights into superantigenic T cell activation. Nat Commun 1:119

    Article  PubMed  Google Scholar 

  • Schafer PH, Pierce SK, Jardetzky TS (1995) The structure of MHC class II: a role for dimer of dimers. Semin Immunol 7:389–98

    Article  PubMed  CAS  Google Scholar 

  • Schamel WW, Arechaga I, Risueno RM, van Santen HM, Cabezas P, Risco C, Valpuesta JM, Alarcon B (2005) Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J Exp Med 202:493–503

    Article  PubMed  CAS  Google Scholar 

  • Scott-Browne JP, White J, Kappler JW, Gapin L, Marrack P (2009) Germline-encoded amino acids in the alphabeta T-cell receptor control thymic selection. Nature 458:1043–6

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Bi Y, Yang W, Xingdong G, Jiang Y, Wan C, Lunyi L, Bai Y, Guo J, Wang Y, Chen X, Wu B, Sun H, Liu W, Wang J, Xu C (2013) Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature 493:115–25

    Google Scholar 

  • Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–76

    Article  PubMed  CAS  Google Scholar 

  • Stefanova I, Dorfman JR, Germain RN (2002) Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420:429–34

    Article  PubMed  CAS  Google Scholar 

  • Swamy M, Siegers GM, Fiala GJ, Molnar E, Dopfer EP, Fisch P, Schraven B, Schamel WW (2010) Stoichiometry and intracellular fate of TRIM-containing TCR complexes. Cell Commun Signal 8:5

    Article  PubMed  Google Scholar 

  • Tikhonova AN, Van Laethem F, Hanada K, Lu J, Pobezinsky LA, Hong C, Guinter TI, Jeurling SK, Bernhardt G, Park JH, Yang JC, Sun PD, Singer A (2012) alphabeta T cell receptors that do not undergo major histocompatibility complex-specific thymic selection possess antibody-like recognition specificities. Immunity 36:79–91

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge IS, Thomas ML (1994) CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol 12:85–116

    Article  PubMed  CAS  Google Scholar 

  • Van Laethem F, Sarafova SD, Park JH, Tai X, Pobezinsky L, Guinter TI, Adoro S, Adams A, Sharrow SO, Feigenbaum L, Singer A (2007) Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. Immunity 27:735–50

    Article  PubMed  Google Scholar 

  • Varma R, Campi G, Yokosuka T, Saito T, Dustin ML (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–27

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Reinherz EL (2012) The structural basis of alphabeta T-lineage immune recognition: TCR docking topologies, mechanotransduction, and co-receptor function. Immunol Rev 250:102–19

    Article  PubMed  Google Scholar 

  • Wang L, Zhao Y, Li Z, Guo Y, Jones LL, Kranz DM, Mourad W, Li H (2007) Crystal structure of a complete ternary complex of TCR, superantigen and peptide-MHC. Nat Struct Mol Biol 14:169–71

    Article  PubMed  CAS  Google Scholar 

  • Wülfing C, Sumen C, Sjaastad MD, Wu LC, Dustin ML, Davis MM (2002) Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat Immunol 3:42–7

    Article  PubMed  Google Scholar 

  • Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, Chou JJ, Wucherpfennig KW (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135:702–13

    Article  PubMed  CAS  Google Scholar 

  • Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6:1253–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the EU through grant FP7/2007–2013 (SYBILLA) and the Deutsche-Forschungsgemeinschaft (DFG) by the Excellence Initiative of the German Research Foundation (EXC294, the Center for Biological Signalling Studies, BIOSS, and GSC-4, Spemann Graduate School), SFB620 B6 and SCHA 976/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang W. A. Schamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Louis-Dit-Sully, C. et al. (2014). Activation of the TCR Complex by Peptide-MHC and Superantigens. In: Martin, S. (eds) T Lymphocytes as Tools in Diagnostics and Immunotoxicology. Experientia Supplementum, vol 104. Springer, Basel. https://doi.org/10.1007/978-3-0348-0726-5_2

Download citation

Publish with us

Policies and ethics