Skip to main content

Part of the book series: Autonomic Systems ((ASYS,volume 1))

Abstract

The problem of learning a generalisable model of the visual appearance of humans from video data is of major importance for computing systems interacting naturally with their users and other humans populating their environment. We propose a step towards automatic behaviour understanding by integrating principles of Organic Computing into the posture estimation cycle, thereby relegating the need for human intervention while simultaneously raising the level of system autonomy. The system extracts coherent motion from moving upper bodies and autonomously decides about limbs and their possible spatial relationships. The models from many videos are integrated into meta-models, which show good generalisation to different individuals, backgrounds, and attire. These models even allow robust interpretation of single video frames, where all temporal continuity is missing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alavi, E.Y., Chartrand, G., Oellermann, O.R., Schwenk, A.J. (eds.): Graph Theory, Combinatorics and Applications, vol. 2, pp. 871–898. Wiley, New York (1991)

    Google Scholar 

  2. Atev, S., Masoud, O., Papanikolopoulos, N.: Learning traffic patterns at intersections by spectral clustering of motion trajectories. In: Proc. Intl. Conf. on Intelligent Robots and Systems, pp. 4851–4856 (2006)

    Chapter  Google Scholar 

  3. Auffarth, B.: Spectral graph clustering. Course report, Universitat de Barcelona, Barcelona, January 2007

    Google Scholar 

  4. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  5. Boykov, Y.Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proc. ICCV, Vancouver, Canada, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  6. Christoudias, C., Georgescu, B., Meer, P.: Synergism in low-level vision. In: Proc. ICPR, Quebec City, Canada, vol. 4, pp. 150–155 (2002)

    Google Scholar 

  7. Daugman, J.G.: Complete discrete 2-d Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoust. Speech Signal Process. 36(7), 1169–1179 (1988)

    Article  MATH  Google Scholar 

  8. Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 800–810 (2001)

    Article  Google Scholar 

  9. Eriksen, R.D.: Image processing library 98 (2006). http://www.mip.sdu.dk/ipl98/

  10. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient matching of pictorial structures. In: Proc. CVPR, vol. 2, pp. 66–73 (2000)

    Google Scholar 

  11. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. Int. J. Comput. Vis. 61(1), 55–79 (2005)

    Article  Google Scholar 

  12. Ferrari, V., Marin-Jimenez, M., Zisserman, A.: Progressive search space reduction for human pose estimation. In: Proc. CVPR, pp. 976–983 (2008)

    Google Scholar 

  13. Kameda, Y., Minoh, M.: A human motion estimation method using 3-successive video frames. In: International Conference on Virtual Systems and Multimedia, Gifu, Japan (1996)

    Google Scholar 

  14. Krahnstoever, N., Yeasin, M., Sharma, R.: Automatic acquisition and initialization of articulated models. Mach. Vis. Appl. 14(4), 218–228 (2003)

    Article  Google Scholar 

  15. Kumar, M.P., Torr, P., Zisserman, A.: Learning layered motion segmentation of video. Int. J. Comput. Vis. 76(3), 301–319 (2008)

    Article  Google Scholar 

  16. Kumar, M.P., Torr, P.H.S., Zisserman, A.: Efficient discriminative learning of parts-based models. In: Proc. ICCV (2009)

    Google Scholar 

  17. Lades, M., Vorbrüggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42(3), 300–311 (1993)

    Article  Google Scholar 

  18. Lee, Y.J., Grauman, K.: Shape discovery from unlabelled image collections. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2254–2261. IEEE Press, New York (2009)

    Google Scholar 

  19. Marcin, E., Vittorio, F.: Better appearance models for pictorial structures. In: Proc. BMVC, September 2009

    Google Scholar 

  20. Montojo, J.: Face-based chromatic adaptation for tagged photo collections (2009)

    Google Scholar 

  21. Müller, M.K., Würtz, R.P.: Learning from examples to generalize over pose and illumination. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) Artificial Neural Networks—ICANN 2009. LNCS, vol. 5769, pp. 643–652. Springer, Berlin (2009)

    Chapter  Google Scholar 

  22. Niebles, J.C., Han, B., Ferencz, A., Fei-Fei, L.: Extracting moving people from Internet videos. In: Proc. ECCV, pp. 527–540. Springer, Berlin (2008)

    Google Scholar 

  23. Noriega, P., Bernier, O.: Multicues 2D articulated pose tracking using particle filtering and belief propagation on factor graphs. In: Proc. ICPR, pp. 57–60 (2007)

    Google Scholar 

  24. NVIDIA. NVIDIA CUDA Compute Unified Device Architecture—Programming Guide. NVIDIA (2007)

    Google Scholar 

  25. Poggio, T., Bizzi, E.: Generalization in vision and motor control. Nature 431, 768–774 (2004)

    Article  Google Scholar 

  26. Porikli, F.: Trajectory distance metric using hidden Markov model based representation. Technical report, Mitsubishi Electric Research Labs (2004)

    Google Scholar 

  27. Ross, D.A., Tarlow, D., Zemel, R.S.: Learning articulated structure and motion. Int. J. Comput. Vis. 88(2), 214–237 (2010)

    Article  Google Scholar 

  28. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. Third Intl. Conf. on 3D Digital Imaging and Modelling, pp. 145–152 (2001)

    Chapter  Google Scholar 

  29. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  30. Shotton, J., Blake, A., Cipolla, R.: Efficiently combining contour and texture cues for object recognition. In: British Machine Vision Conference (2008)

    Google Scholar 

  31. Sinha, S.N., Frahm, J.-M., Pollefeys, M., Genc, Y.: Gpu-based video feature tracking and matching. Technical report 06-012, Department of Computer Science, UNC Chapel Hill (2006)

    Google Scholar 

  32. Sminchisescu, C., Triggs, B.: Estimating articulated human motion with covariance scaled sampling. Int. J. Robot. Res. 22, 371–391 (2003)

    Article  Google Scholar 

  33. Tomasi, C., Kanade, T.: Detection and tracking of point features. Technical Report CMU-CS-91-132, Carnegie Mellon University (1991)

    Google Scholar 

  34. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  35. Walther, T., Würtz, R.P.: Learning to look at humans—what are the parts of a moving body. In: Perales, F.J., Fisher, R.B. (eds.) Proc. Fifth Conference on Articulated Motion and Deformable Objects. LNCS, vol. 5098, pp. 22–31. Springer, Berlin (2008)

    Chapter  Google Scholar 

  36. Walther, T., Würtz, R.P.: Unsupervised learning of human body parts from video footage. In: Proceedings of ICCV Workshops, Kyoto, pp. 336–343. IEEE Comput. Soc., Los Alamitos (2009)

    Google Scholar 

  37. Walther, T., Würtz, R.P.: Learning generic human body models. In: Perales, F., Fisher, R. (eds.) Proc. Sixth Conference on Articulated Motion and Deformable Objects. LNCS, vol. 6169, pp. 98–107. Springer, Berlin (2010)

    Chapter  Google Scholar 

  38. Wang, H., Culverhouse, P.F.: Robust motion segmentation by spectral clustering. In: Proc. British Machine Vision Conference, Norwich, UK, pp. 639–648 (2003)

    Google Scholar 

  39. Würtz, R.P. (ed.): Organic Computing. Springer, Berlin (2008)

    Google Scholar 

  40. Yan, J., Pollefeys, M.: Automatic kinematic chain building from feature trajectories of articulated objects. In: Proc. of CVPR, pp. 712–719 (2006)

    Google Scholar 

  41. Yan, J., Pollefeys, M.: A factorization-based approach for articulated nonrigid shape, motion and kinematic chain recovery from video. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 865–877 (2008)

    Article  Google Scholar 

  42. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems. NIPS, vol. 17 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Walther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Walther, T., Würtz, R.P. (2011). Learning to Look at Humans. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds) Organic Computing — A Paradigm Shift for Complex Systems. Autonomic Systems, vol 1. Springer, Basel. https://doi.org/10.1007/978-3-0348-0130-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0130-0_20

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0129-4

  • Online ISBN: 978-3-0348-0130-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics