Skip to main content

Characterizing and Modeling Synchronous Clock-Glitch Fault Injection

  • Conference paper
  • First Online:
Constructive Side-Channel Analysis and Secure Design (COSADE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14595))

  • 262 Accesses

Abstract

In the realm of fault injection (FI), electromagnetic fault injection (EMFI) attacks have garnered significant attention, particularly for their effectiveness against embedded systems with minimal setup. These attacks exploit vulnerabilities with ease, underscoring the importance of comprehensively understanding EMFI. Recent studies have highlighted the impact of EMFI on phase-locked loops (PLLs), uncovering specific clock glitches that induce faults. However, these studies lack a detailed explanation of how these glitches translate into a specific fault model. Addressing this gap, our research investigates the physical fault model of synchronous clock glitches (SCGs), a clock glitch injection mechanism likely to arise from EMFI interactions within the clock network. Through an integrated approach combining experimental and simulation techniques, we critically analyze the adequacy of existing fault models, such as the Timing Fault Model and the Sampling Fault Model, in explaining SCGs. Our findings reveal specific failure modes in D flip-flops (DFFs), contributing to a deeper understanding of EMFI effects and aiding in the development of more robust defensive strategies against such attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. 7 Series FPGAs Clocking Resources. https://docs.xilinx.com/v/u/en-US/ug472_7Series_Clocking

  2. Eldo Platform. https://eda.sw.siemens.com/en-US/ic/eldo/

  3. Agoyan, M., Dutertre, J.-M., Naccache, D., Robisson, B., Tria, A.: When clocks fail: on critical paths and clock faults. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 182–193. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12510-2_13

    Chapter  Google Scholar 

  4. Chen, D., et al.: A comprehensive approach to modeling, characterizing and optimizing for metastability in FPGAs. In: Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA), pp. 167–176 (2010)

    Google Scholar 

  5. Claudepierre, L., Besnier, P.: Microcontroller sensitivity to fault-injection induced by near-field electromagnetic interference. In: APEMC - Asia-Pacific International Symposium on Electromagnetic Compatibility, Sapporo, Japan, pp. 1–4 (2019)

    Google Scholar 

  6. Claudepierre, L., Péneau, P.-Y., Hardy, D., Rohou, E.: TRAITOR: a low-cost evaluation platform for multifault injection. In: Meng, W., Li, L. (eds.) ASSS 2021: Proceedings of the 2021 International Symposium on Advanced Security on Software and Systems, Virtual Event, Hong Kong, pp. 51–56. ACM (2021)

    Google Scholar 

  7. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Tria, A.: Electromagnetic transient faults injection on a hardware and a software implementations of AES. In: Bertoni, G., Gierlichs, B., (eds.) Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium, pp. 7–15. IEEE Computer Society (2012)

    Google Scholar 

  8. Dumont, M., Lisart, M., Maurine, P.: Electromagnetic fault injection: how faults occur. In: Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2019, Atlanta, GA, USA, pp. 9–16. IEEE (2019)

    Google Scholar 

  9. Dumont, M., Lisart, M., Maurine, P.: Modeling and simulating electromagnetic fault injection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(4), 680–693 (2021)

    Article  Google Scholar 

  10. Gicquel, A., Hardy, D., Heydemann, K., Rohou, E.: SAMVA: static analysis for multi-fault attack paths determination. In: Kavun, E.B., Pehl, M. (eds.) COSADE 2023. LNCS, vol. 13979, pp. 3–22. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-29497-6_1

    Chapter  Google Scholar 

  11. Giechaskiel, I., Rasmussen, K.B., Eguro, K.: Leaky wires: information leakage and covert communication between FPGA long wires. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, ASIACCS 2018, pp. 15–27. Association for Computing Machinery, New York (2018)

    Google Scholar 

  12. Khuat, V., Danger, J.-L., Dutertre, J.-M.: Laser fault injection in a 32-bit microcontroller: from the flash interface to the execution pipeline. In: 18th Workshop on Fault Detection and Tolerance in Cryptography, FDTC 2021, Milan, Italy, pp. 74–85. IEEE (2021)

    Google Scholar 

  13. Liao, H., Gebotys, C.H.: Methodology for EM fault injection: charge-based fault model. In: Teich, J., Fummi, F. (eds.) Design, Automation & Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, pp. 256–259. IEEE (2019)

    Google Scholar 

  14. Maurine, P.: Techniques for EM fault injection: equipments and experimental results. In: Bertoni, G., Gierlichs, B. (eds.) Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium, pp. 3–4. IEEE Computer Society (2012)

    Google Scholar 

  15. Nabhan, R., Dutertre, J.-M., Rigaud, J.-B., Danger, J.-L., Sauvage, L.: Highlighting two EM fault models while analyzing a digital sensor limitations. In: 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–2 (2023)

    Google Scholar 

  16. Ordas, S., Guillaume-Sage, L., Maurine, P.: Electromagnetic fault injection: the curse of flip-flops. J. Cryptogr. Eng. 7(3), 183–197 (2017)

    Article  Google Scholar 

  17. Péneau, P.-Y., Claudepierre, L., Hardy, D., Rohou, E.: NOP-oriented programming: should we care? In: IEEE European Symposium on Security and Privacy Workshops, EuroS &P Workshops 2020, Genoa, Italy, pp. 694–703. IEEE (2020)

    Google Scholar 

  18. Roscian, C., Dutertre, J.-M., Tria, A.: Frontside laser fault injection on cryptosystems - application to the AES’ last round -. In: 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 119–124 (2013)

    Google Scholar 

  19. Selmane, N., Guilley, S., Danger, J.-L.: Practical setup time violation attacks on AES. In: Seventh European Dependable Computing Conference, EDCC-7 2008, Kaunas, Lithuania, pp. 91–96. IEEE Computer Society (2008)

    Google Scholar 

  20. Timmers, N., Spruyt, A., Witteman, M.: Controlling PC on ARM using fault injection. In: Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA, pp. 25–35. IEEE Computer Society (2016)

    Google Scholar 

  21. Tollec, S., Asavoae, M., Couroussé, D., Heydemann, K., Jan, M.: Exploration of fault effects on formal RISC-V microarchitecture models. In: Workshop on Fault Detection and Tolerance in Cryptography, FDTC 2022, Virtual Event/Italy, pp. 73–83. IEEE (2022)

    Google Scholar 

  22. Trouchkine, T., Bouffard, G., Clédière, J.: Fault injection characterization on modern CPUs. In: Laurent, M., Giannetsos, T. (eds.) WISTP 2019. LNCS, vol. 12024, pp. 123–138. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41702-4_8

    Chapter  Google Scholar 

  23. Trouchkine, T., Bouffard, G., Clédière, J.: EM fault model characterization on SoCs: from different architectures to the same fault model. In: 18th Workshop on Fault Detection and Tolerance in Cryptography, FDTC 2021, Milan, Italy, pp. 31–38. IEEE (2021)

    Google Scholar 

  24. Trouchkine, T., Bukasa, S.K., Escouteloup, M., Lashermes, R., Bouffard, G.: Electromagnetic fault injection against a complex CPU, toward new micro-architectural fault models. J. Cryptogr. Eng. 11(4), 353–367 (2021)

    Article  Google Scholar 

  25. Yuan, S.-Y., Wu, Y.-L., Perdriau, R., Liao, S.-S., Ho, H.-P.:. Electromagnetic interference analysis using an embedded phase-lock loop. In: Asia-Pacific Symposium on Electromagnetic Compatibility, pp. 189–192 (2012)

    Google Scholar 

  26. Yuce, B., Schaumont, P., Witteman, M.: Fault attacks on secure embedded software: threats, design, and evaluation. J. Hardw. Syst. Secur. 2(2), 111–130 (2018)

    Article  Google Scholar 

  27. Zhang, M., Li, H., Liu, Q.: Deep exploration on fault model of electromagnetic pulse attack. IEEE Trans. Nanotechnol. 21, 598–605 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Marotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marotta, A., Lashermes, R., Bouffard, G., Sentieys, O., Dafali, R. (2024). Characterizing and Modeling Synchronous Clock-Glitch Fault Injection. In: Wacquez, R., Homma, N. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2024. Lecture Notes in Computer Science, vol 14595. Springer, Cham. https://doi.org/10.1007/978-3-031-57543-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-57543-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-57542-6

  • Online ISBN: 978-3-031-57543-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics