Skip to main content

Sample Preparation for Electron Cryo-Microscopy of Macromolecular Machines

  • Chapter
  • First Online:
Advanced Technologies for Protein Complex Production and Characterization

Abstract

High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 189.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kühlbrandt W (2014) Cryo-EM enters a new era. elife 3:e03678

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fernandez-Leiro R, Scheres SH (2016) Unravelling biological macromolecules with cryo-electron microscopy. Nature 537(7620):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frank J (2016) Generalized single-particle cryo-EM--a historical perspective. Microscopy (Oxf) 65(1):3–8. https://doi.org/10.1093/jmicro/dfv358

    Article  PubMed  Google Scholar 

  4. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S (2016) Breaking Cryo-EM resolution barriers to facilitate drug discovery. Cell 165(7):1698–1707. https://doi.org/10.1016/j.cell.2016.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6(2):187–194. https://doi.org/10.1016/S0304-3991(81)80197-0

    Article  PubMed  Google Scholar 

  6. Lyumkis D, Brilot AF, Theobald DL, Grigorieff N (2013) Likelihood-based classification of cryo-EM images using FREALIGN. J Struct Biol 183(3):377–388. https://doi.org/10.1016/j.jsb.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  7. Nogales E, Scheres SH (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol Cell 58(4):677–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scarff CA, Fuller MJG, Thompson RF, Iadaza MG (2018) Variations on negative stain electron microscopy methods: tools for tackling challenging systems. J Vis Exp 132. https://doi.org/10.3791/57199

  9. Vedadi M, Niesen FH, Allali-Hassani A, Fedorov OY, Finerty PJ Jr, Wasney GA, Yeung R, Arrowsmith C, Ball LJ, Berglund H, Hui R, Marsden BD, Nordlund P, Sundstrom M, Weigelt J, Edwards AM (2006) Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc Natl Acad Sci U S A 103(43):15835–15840. https://doi.org/10.1073/pnas.0605224103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scheres SH (2016) Processing of structurally heterogeneous Cryo-EM data in RELION. Methods Enzymol 579:125–157

    Article  CAS  PubMed  Google Scholar 

  11. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14(3):290–296. https://doi.org/10.1038/nmeth.4169

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen THD, Galej WP, Bai XC, Oubridge C, Newman AJ, Scheres SHW, Nagai K (2016) Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 A resolution. Nature 530(7590):298–302. https://doi.org/10.1038/nature16940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. von Loeffelholz O, Natchiar SK, Djabeur N, Myasnikov AG, Kratzat H, Menetret JF, Hazemann I, Klaholz BP (2017) Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes. Curr Opin Struct Biol 46:140–148

    Article  Google Scholar 

  14. Lepault J, Booy FP, Dubochet J (1983) Electron microscopy of frozen biological suspensions. J Microsc 129(Pt 1):89–102. https://doi.org/10.1111/j.1365-2818.1983.tb04163.x

    Article  CAS  PubMed  Google Scholar 

  15. Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA (2016) An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 100:3–15. https://doi.org/10.1016/j.ymeth.2016.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mesa P, Deniaud A, Montoya G, Schaffitzel C (2013) Directly from the source: endogenous preparations of molecular machines. Curr Opin Struct Biol 23(3):319–325

    Article  CAS  PubMed  Google Scholar 

  17. Chen R (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30(5):1102–1107. https://doi.org/10.1016/j.biotechadv.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Bishop B, Clay JE, Lu W, Jones M, Daenke S, Siebold C, Stuart DI, Jones EY, Aricescu AR (2011) Automation of large scale transient protein expression in mammalian cells. J Struct Biol 175(2):209–215. https://doi.org/10.1016/j.jsb.2011.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pelosse M, Crocker H, Gorda B, Lemaire P, Rauch J, Berger I (2017) MultiBac: from protein complex structures to synthetic viral nanosystems. BMC Biol 15(1):99

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, Muramatsu R, Morita T, Iwamatsu A, Hachiya T, Kurata R, Hirano H, Anderson P, Ohno S (2009) SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev 23(9):1091–1105. https://doi.org/10.1101/gad.1767209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deniaud A, Karuppasamy M, Bock T, Masiulis S, Huard K, Garzoni F, Kerschgens K, Hentze MW, Kulozik AE, Beck M, Neu-Yilik G, Schaffitzel C (2015) A network of SMG-8, SMG-9 and SMG-1 C-terminal insertion domain regulates UPF1 substrate recruitment and phosphorylation. Nucleic Acids Res 43(15):7600–7611. https://doi.org/10.1093/nar/gkv668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu P, Bai XC, Ma D, Xie T, Yan C, Sun L, Yang G, Zhao Y, Zhou R, Scheres SHW, Shi Y (2014) Three-dimensional structure of human gamma-secretase. Nature 512(7513):166–170. https://doi.org/10.1038/nature13567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bai XC, Yan C, Yang G, Lu P, Ma D, Sun L, Zhou R, Scheres SHW, Shi Y (2015) An atomic structure of human gamma-secretase. Nature 525(7568):212–217. https://doi.org/10.1038/nature14892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Proteau A, Shi R, Cygler M (2010) Application of dynamic light scattering in protein crystallization. Curr Protoc Protein Sci Chapter 17: Unit 17 10

    Google Scholar 

  25. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357(2):289–298. https://doi.org/10.1016/j.ab.2006.07.027

    Article  CAS  PubMed  Google Scholar 

  26. Chari A, Haselbach D, Kirves JM, Ohmer J, Paknia E, Fischer N, Ganichkin O, Moller V, Frye JJ, Petzold G, Jarvis M, Tietzel M, Grimm C, Peters JM, Schulman BA, Tittmann K, Markl J, Fischer U, Stark H (2015) ProteoPlex: stability optimization of macromolecular complexes by sparse-matrix screening of chemical space. Nat Methods 12(9):859–865. https://doi.org/10.1038/nmeth.3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stark H, Chari A (2016) Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy. Microscopy (Oxf) 65(1):23–34

    Article  CAS  PubMed  Google Scholar 

  28. Kim J, Wu S, Tomasiak TM, Mergel C, Winter MB, Stiller SB, Robles-Colmanares Y, Stroud RM, Tampe R, Craik CS, Cheng Y (2015) Subnanometre-resolution electron cryomicroscopy structure of a heterodimeric ABC exporter. Nature 517(7534):396–400. https://doi.org/10.1038/nature13872

    Article  CAS  PubMed  Google Scholar 

  29. Wu S, Avila-Sakar A, Kim J, Booth DS, Greenberg CH, Rossi A, Liao M, Li X, Alian A, Griner SL, Juge N, Yu Y, Mergel CM, Chaparro-Riggers J, Strop P, Tampe R, Edwards RH, Stroud RM, Craik CS, Cheng Y (2012) Fabs enable single particle cryoEM studies of small proteins. Structure 20(4):582–592. https://doi.org/10.1016/j.str.2012.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davies RB, Smits C, Wong ASW, Stock D, Christie M, Sandin S, Stewart AG (2017) Cryo-EM analysis of a domain antibody bound rotary ATPase complex. J Struct Biol 197(3):350–353. https://doi.org/10.1016/j.jsb.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  31. Westfield GH, Rasmussen SG, Su M, Dutta S, DeVree BT, Chung KY, Calinski D, Velez-Ruiz G, Oleskie AN, Pardon E, Chae PS, Liu T, Li S, Woods VL Jr, Steyaert J, Kobilka BK, Sunahara RK, Skiniotis G (2011) Structural flexibility of the G alpha s alpha-helical domain in the beta2-adrenoceptor Gs complex. Proc Natl Acad Sci U S A 108(38):16086–16091. https://doi.org/10.1073/pnas.1113645108

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang CR, Gu LL, Shan JM, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods VL Jr, Kobilka BK, Skiniotis G, Lefkowitz RJ (2014) Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512(7513):218–222. https://doi.org/10.1038/nature13430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Nafria J, Lee Y, Bai X, Carpenter B, Tate CG (2018) Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. elife 7. https://doi.org/10.7554/eLife.35946.001

  34. Coscia F, Estrozi LF, Hans F, Malet H, Noirclerc-Savoye M, Schoehn G, Petosa C (2016) Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein." Sci Rep. Sci Rep 6:30909. https://doi.org/10.1038/srep30909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vijayachandran LS, Viola C, Garzoni F, Trowitzsch S, Bieniossek C, Chaillet M, Schaffitzel C, Busso D, Romier C, Poterszman A, Richmond TJ, Berger I (2011) Robots, pipelines, polyproteins: enabling multiprotein expression in prokaryotic and eukaryotic cells. J Struct Biol 175(2):198–208. https://doi.org/10.1016/j.jsb.2011.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crepin T, Swale C, Monod A, Garzoni F, Chaillet M, Berger I (2015) Polyproteins in structural biology. Curr Opin Struct Biol 32:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. von Loeffelholz O, Jiang Q, Ariosa A, Karuppasamy M, Huard K, Berger I, Shan SO, Schaffitzel C (2015) Ribosome-SRP-FtsY cotranslational targeting complex in the closed state. Proc Natl Acad Sci U S A 112(13):3943–3948. https://doi.org/10.1073/pnas.1424453112

    Article  CAS  Google Scholar 

  38. Karuppasamy M, Kusmider B, Oliveira TM, Gaubitz C, Prouteau M, Loewith R, Schaffitzel C (2017) Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2. Nat Commun 8(1):1729. https://doi.org/10.1038/s41467-017-01862-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kastner B, Fischer N, Golas MM, Sander B, Dube P, Boehringer D, Hartmuth K, Deckert J, Hauer F, Wolf E, Uchtenhagen H, Urlaub H, Herzog F, Peters JM, Poerschke D, Luhrmann R, Stark H (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5(1):53–55. https://doi.org/10.1038/nmeth1139

    Article  CAS  PubMed  Google Scholar 

  40. Mio K, Sato C (2018) Lipid environment of membrane proteins in cryo-EM based structural analysis. Biophys Rev 10(2):307–316

    Article  CAS  PubMed  Google Scholar 

  41. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478):107–112. https://doi.org/10.1038/nature12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vinothkumar KR, Zhu J, Hirst J (2014) Architecture of mammalian respiratory complex I. Nature 515(7525):80–84. https://doi.org/10.1038/nature13686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang JS, Pentelute BL, Collier RJ, Zhou ZH (2015) Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521(7553):545–U323. https://doi.org/10.1038/nature14247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Voorhees RM, Hegde RS (2016) Structure of the Sec61 channel opened by a signal sequence. Science 351(6268):88–91. https://doi.org/10.1126/science.aad4992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tao X, Hite RK, MacKinnon R (2017) Cryo-EM structure of the open high-conductance ca(2+)-activated K(+) channel. Nature 541(7635):46–51. https://doi.org/10.1038/nature20608

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Sun B, Feng D, Hu H, Chu M, Qu Q, Tarrasch JT, Li S, Sun Kobilka T, Kobilka BK, Skiniotis G (2017) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546(7657):248–253. https://doi.org/10.1038/nature22394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim Y, Chen J (2018) Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science 359(6378):915–919. https://doi.org/10.1126/science.aar7389

    Article  CAS  PubMed  Google Scholar 

  48. Qian P, Siebert CA, Wang P, Canniffe DP, Hunter CN (2018) Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 A. Nature 556(7700):203–208. https://doi.org/10.1038/s41586-018-0014-5

    Article  CAS  PubMed  Google Scholar 

  49. Vinothkumar KR (2015) Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr Opin Struct Biol 33:103–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hauer F, Gerle C, Fischer N, Oshima A, Shinzawa-Itoh K, Shimada S, Yokoyama K, Fujiyoshi Y, Stark H (2015) GraDeR: membrane protein complex preparation for single-particle cryo-EM. Structure 23(9):1769–1775. https://doi.org/10.1016/j.str.2015.06.029

    Article  CAS  PubMed  Google Scholar 

  51. Popot JL, Althoff T, Bagnard D, Baneres JL, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Cremel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408. https://doi.org/10.1146/annurev-biophys-042910-155219

    Article  CAS  PubMed  Google Scholar 

  52. Mazhab-Jafari MT, Rohou A, Schmidt C, Bueler SA, Benlekbir S, Robinson CV, Rubinstein JL (2016) Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase. Nature 539(7627):118–122. https://doi.org/10.1038/nature19828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Su Q, Hu F, Liu Y, Ge X, Mei C, Yu S, Shen A, Zhou Q, Yan C, Lei J, Zhang Y, Liu X, Wang T (2018) Cryo-EM structure of the polycystic kidney disease-like channel PKD2L1. Nat Commun 9(1):1192. https://doi.org/10.1038/s41467-018-03606-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Denisov IG, Sligar SG (2016) Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol 23(6):481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Frauenfeld J, Gumbart J, Sluis EO, Funes S, Gartmann M, Beatrix B, Mielke T, Berninghausen O, Becker T, Schulten K, Beckmann R (2011) Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat Struct Mol Biol 18(5):614–621. https://doi.org/10.1038/nsmb.2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Efremov RG, Leitner A, Aebersold R, Raunser S (2015) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517(7532):39–43. https://doi.org/10.1038/nature13916

    Article  CAS  PubMed  Google Scholar 

  57. Yan Z, Bai X, Yan C, Wu J, Li Z, Xie T, Peng W, Yin C, Li X, Scheres SHW, Shi Y, Yan N (2015) Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517(7532):50–55. https://doi.org/10.1038/nature14063

    Article  CAS  PubMed  Google Scholar 

  58. Zalk R, Clarke OB, des Georges A, Grassucci RA, Reiken S, Mancia F, Hendrickson WA, Frank J, Marks AR (2015) Structure of a mammalian ryanodine receptor. Nature 517(7532):44–49. https://doi.org/10.1038/nature13950

    Article  CAS  PubMed  Google Scholar 

  59. Frauenfeld J, Loving R, Armache JP, Sonnen AF, Guettou F, Moberg P, Zhu L, Jegerschold C, Flayhan A, Briggs JA, Garoff H, Low C, Cheng Y, Nordlund P (2016) A saposin-lipoprotein nanoparticle system for membrane proteins. Nat Methods 13(4):345–351. https://doi.org/10.1038/nmeth.3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bruhn H (2005) A short guided tour through functional and structural features of saposin-like proteins. Biochem J 389(Pt 2):249–257. https://doi.org/10.1042/BJ20050051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Knowles TJ, Finka R, Smith C, Lin YP, Dafforn T, Overduin M (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131(22):7484–7485. https://doi.org/10.1021/ja810046q

    Article  CAS  PubMed  Google Scholar 

  62. Sun C, Benlekbir S, Venkatakrishnan P, Wang Y, Hong S, Hosler J, Tajkhorshid E, Rubinstein JL, Gennis RB (2018) Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 557(7703):123–126. https://doi.org/10.1038/s41586-018-0061-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cheng Y, Grigorieff N, Penczek PA, Walz T (2015) A primer to single-particle cryo-electron microscopy. Cell 161(3):438–449. https://doi.org/10.1016/j.cell.2015.03.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grassucci RA, Taylor D, Frank J (2008) Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes. Nat Protoc 3(2):330–339. https://doi.org/10.1038/nprot.2007.474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kelly D, Dukovski D, Walz T (2010) A practical guide to the use of monolayer purification and affinity grids. Methods Enzymol 481:83–107. https://doi.org/10.1016/S0076-6879(10)81004-3

    Article  CAS  PubMed  Google Scholar 

  66. Yu G, Vago F, Zhang D, Snyder JE, Yan R, Zhang C, Benjamin C, Jiang X, Kuhn RJ, Serwer P, Thompson DH, Jiang W (2014) Single-step antibody-based affinity cryo-electron microscopy for imaging and structural analysis of macromolecular assemblies. J Struct Biol 187(1):1–9. https://doi.org/10.1016/j.jsb.2014.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Crucifix C, Uhring M, Schultz P (2004) Immobilization of biotinylated DNA on 2-D streptavidin crystals. J Struct Biol 146(3):441–451. https://doi.org/10.1016/j.jsb.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  68. Scheres SH (2014) Beam-induced motion correction for sub-megadalton cryo-EM particles. elife 3:e03665. https://doi.org/10.7554/eLife.03665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Russo CJ, Passmore LA (2014) Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346(6215):1377–1380. https://doi.org/10.1126/science.1259530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Russo CJ, Passmore LA (2014) Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nat Methods 11(6):649–652. https://doi.org/10.1038/nmeth.2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garaeva AA, Oostergetel GT, Gati C, Guskov A, Paulino C, Slotboom DJ (2018) Cryo-EM structure of the human neutral amino acid transporter ASCT2. Nat Struct Mol Biol 25(6):515–521. https://doi.org/10.1038/s41594-018-0076-y

    Article  CAS  PubMed  Google Scholar 

  72. Lee CH, MacKinnon R (2017) Structures of the human HCN1 hyperpolarization-activated channel. Cell 168(1–2):111–120 e111. https://doi.org/10.1016/j.cell.2016.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Razinkov I, Dandey V, Wei H, Zhang Z, Melnekoff D, Rice WJ, Wigge C, Potter CS, Carragher B (2016) A new method for vitrifying samples for cryoEM. J Struct Biol 195(2):190–198. https://doi.org/10.1016/j.jsb.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Feng X, Fu Z, Kaledhonkar S, Jia Y, Shah B, Jin A, Liu Z, Sun M, Chen B, Grassucci RA, Ren Y, Jiang H, Frank J, Lin Q (2017) A fast and effective microfluidic spraying-plunging method for high-resolution single-particle cryo-EM. Structure 25(4):663–670 e663. https://doi.org/10.1016/j.str.2017.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arnold SA, Albiez S, Bieri A, Syntychaki A, Adaixo R, McLeod RA, Goldie KN, Stahlberg H, Braun T (2017) Blotting-free and lossless cryo-electron microscopy grid preparation from nanoliter-sized protein samples and single-cell extracts. J Struct Biol 197(3):220–226. https://doi.org/10.1016/j.jsb.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  76. Wei H, Dandey VP, Zhang Z, Raczkowski A, Rice WJ, Carragher B, Potter CS (2018) Optimizing "self-wicking" nanowire grids. J Struct Biol 202(2):170–174. https://doi.org/10.1016/j.jsb.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu Z, Shaikh TR, Barnard D, Meng X, Mohamed H, Yassin A, Mannella CA, Agrawal RK, Lu TM, Wagenknecht T (2009) Monolithic microfluidic mixing-spraying devices for time-resolved cryo-electron microscopy. J Struct Biol 168(3):388–395. https://doi.org/10.1016/j.jsb.2009.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  78. Glaeser RM (2016) How good can cryo-EM become? Nat Methods 13(1):28–32

    Article  CAS  PubMed  Google Scholar 

  79. Danev R, Buijsse B, Khoshouei M, Plitzko JM, Baumeister W (2014) Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc Natl Acad Sci U S A 111(44):15635–15640. https://doi.org/10.1073/pnas.1418377111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Danev R, Baumeister W (2016) Cryo-EM single particle analysis with the Volta phase plate. elife 5

    Google Scholar 

  81. Mahamid J, Pfeffer S, Schaffer M, Villa E, Danev R, Cuellar LK, Forster F, Hyman AA, Plitzko JM, Baumeister W (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351(6276):969–972. https://doi.org/10.1126/science.aad8857

    Article  CAS  PubMed  Google Scholar 

  82. Khoshouei M, Radjainia M, Baumeister W, Danev R (2017) Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate. Nat Commun 8:16099. https://doi.org/10.1038/ncomms16099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM, Furness SGB, Christopoulos G, Coudrat T, Danev R, Baumeister W, Miller LJ, Christopoulos A, Kobilka BK, Wootten D, Skiniotis G, Sexton PM (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546(7656):118–123. https://doi.org/10.1038/nature22327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liang YL, Khoshouei M, Glukhova A, Furness SGB, Zhao P, Clydesdale L, Koole C, Truong TT, Thal DM, Lei S, Radjainia M, Danev R, Baumeister W, Wang MW, Miller LJ, Christopoulos A, Sexton PM, Wootten D (2018) Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature 555(7694):121–125. https://doi.org/10.1038/nature25773

    Article  CAS  PubMed  Google Scholar 

  85. Schaffer M, Mahamid J, Engel BD, Laugks T, Baumeister W, Plitzko JM (2017) Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J Struct Biol 197(2):73–82. https://doi.org/10.1016/j.jsb.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  86. Wan W, Briggs JA (2016) Cryo-electron tomography and subtomogram averaging. Methods Enzymol 579:329–367

    Article  CAS  PubMed  Google Scholar 

  87. Baker LA, Grange M, Grünewald K (2017) Electron cryo-tomography captures macromolecular complexes in native environments. Curr Opin Struct Biol 46:149–156

    Article  CAS  PubMed  Google Scholar 

  88. Oikonomou CM, Jensen GJ (2017) Cellular electron cryotomography: toward structural biology in situ. Annu Rev Biochem 86:873–896. https://doi.org/10.1146/annurev-biochem-061516-044741

    Article  CAS  PubMed  Google Scholar 

  89. Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, Hagen WJ, Briggs JA, Glavy JS, Hurt E, Beck M (2016) Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352(6283):363–365. https://doi.org/10.1126/science.aaf0643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lin DH, Stuwe T, Schilbach S, Rundlet EJ, Perriches T, Mobbs G, Fan Y, Thierbach K, Huber FM, Collins LN, Davenport AM, Jeon YE, Hoelz A (2016) Architecture of the symmetric core of the nuclear pore. Science 352(6283):aaf1015. https://doi.org/10.1126/science.aaf1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu M, Gu J, Guo R, Huang Y, Yang M (2016) Structure of mammalian respiratory supercomplex I1III2IV1. Cell 167(6):1598–1609 e1510

    Article  CAS  PubMed  Google Scholar 

  92. Zhang S, Kostyuchenko VA, Ng TS, Lim XN, Ooi JS, Lambert S, Tan TY, Widman DG, Shi J, Baric RS, Lok SM (2016) Neutralization mechanism of a highly potent antibody against Zika virus. Nat Commun 7:13679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Han Y, Yan C, Nguyen THD, Jackobel AJ, Ivanov I, Knutson BA, He Y (2017) Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. Elife 6:e27414. https://doi.org/10.7554/eLife.27414

  94. Wang F, Burrage AM, Postel S, Clark RE, Orlova A, Sundberg EJ, Kearns DB, Egelman EH (2017) A structural model of flagellar filament switching across multiple bacterial species. Nat Commun 8(1):960

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fislage M, Zhang J, Brown ZP, Mandava CS, Sanyal S, Ehrenberg M, Frank J (2018) Cryo-EM shows stages of initial codon selection on the ribosome by aa-tRNA in ternary complex with GTP and the GTPase-deficient EF-Tu H84A. Nucleic Acids Res 46(11):5861–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607):347–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of the Berger and Schaffitzel team and Dr. Ufuk Borucu for critically reading the manuscript. CS acknowledges funding by the BBSRC (BB/P000940/1), the MRC (MR/P019471/1) and the Wellcome Trust (210701/Z/18/Z). AD acknowledges funding by the CEA DRF-Impulsion program (FIB-Bio grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Schaffitzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deniaud, A., Kabasakal, B.V., Bufton, J.C., Schaffitzel, C. (2024). Sample Preparation for Electron Cryo-Microscopy of Macromolecular Machines. In: Vega, M.C., Fernández, F.J. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 1453. Springer, Cham. https://doi.org/10.1007/978-3-031-52193-5_12

Download citation

Publish with us

Policies and ethics