Skip to main content

Axonal Myelination as a Mechanism for Unsupervised Learning in Spiking Neural Networks

  • Conference paper
  • First Online:
Biologically Inspired Cognitive Architectures 2023 (BICA 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1130))

Included in the following conference series:

  • 157 Accesses

Abstract

Plasticity of synaptic weights is usually supposed the foundation of learning and long-term memory in biological neural networks. Mathematical models of both biological and artificial neural networks reflect this vision. Little attention is paid to the role spike propagation delays play in information processing and learning. We propose a model of myelin plasticity which controls the efficiency of spikes propagation along axons. A neuron modifies the myelin sheath thickness of its input axons to achieve better synchrony of incoming spikes. Synchronous input spikes cause higher postsynaptic response which leads to higher spike generation probability. We show that the axonal delay plasticity model may be used to train a network recognize input patterns even when synaptic weights remain fixed. The delay plasticity approach may be a useful augmentation of spiking neural networks used in neuromorphic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dutta, D.J., Woo, D.H., Lee, P.R., Pajevic, S., Bukalo, O., Huffman, W.C., Wake, H., Basser, P.J., SheikhBahaei, S., Lazarevic, V., et al.: Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc. Natl. Acad. Sci. 115(46), 11832–11837 (2018)

    Article  Google Scholar 

  2. Ferraina, S., Paré, M., Wurtz, R.H.: Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J. Neurophysiol. 87(2), 845–858 (2002)

    Article  Google Scholar 

  3. Fields, R.D., Bukalo, O.: Myelin makes memories. Nat. Neurosci. 23(4), 469–470 (2020)

    Article  Google Scholar 

  4. FitzGibbon, T., Nestorovski, Z.: Human intraretinal myelination: Axon diameters and axon/myelin thickness ratios. Indian J. Ophthalmol. 61(10), 567 (2013)

    Article  Google Scholar 

  5. Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)

    Article  Google Scholar 

  6. Khoshkhou, M., Montakhab, A.: Spike-timing-dependent plasticity with axonal delay tunes networks of izhikevich neurons to the edge of synchronization transition with scale-free avalanches. Front. Syst. Neurosci. 13, 73 (2019)

    Article  Google Scholar 

  7. London, M., Häusser, M.: Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005)

    Article  Google Scholar 

  8. Maass, W., Schmitt, M.: On the complexity of learning for spiking neurons with temporal coding. Inf. Comput. 153(1), 26–46 (1999)

    Article  MathSciNet  Google Scholar 

  9. Nadafian, A., Ganjtabesh, M.: Bio-plausible Unsupervised Delay Learning for Extracting Temporal Features in Spiking Neural Networks. arXiv preprint arXiv:2011.09380 (2020)

  10. Oubari, O.: Precise timing and computationally efficient learning in neuromorphic systems. Ph.D. thesis, Sorbonne université (2020)

    Google Scholar 

  11. Paugam-Moisy, H., Martinez, R., Bengio, S.: Delay learning and polychronization for reservoir computing. Neurocomputing 71(7–9), 1143–1158 (2008)

    Article  Google Scholar 

  12. Talidou, A., Frankland, P.W., Mabbott, D., Lefebvre, J.: Learning to be on Time: Temporal Coordination of Neural Dynamics by Activity-Dependent Myelination. bioRxiv, pp. 2021–08 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda Chaplinskaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaplinskaia, N., Bazenkov, N. (2024). Axonal Myelination as a Mechanism for Unsupervised Learning in Spiking Neural Networks. In: Samsonovich, A.V., Liu, T. (eds) Biologically Inspired Cognitive Architectures 2023. BICA 2023. Studies in Computational Intelligence, vol 1130. Springer, Cham. https://doi.org/10.1007/978-3-031-50381-8_20

Download citation

Publish with us

Policies and ethics