Skip to main content

IoT Battery-Less System for Plant Health Monitoring

  • Conference paper
  • First Online:
Proceedings of SIE 2023 (SIE 2023)

Abstract

In this work, we introduce an innovative battery-less Internet of Things (IoT) device designed specifically for the purpose of monitoring plant health. This system operates by gathering energy directly from the soil where the plant is rooted, employing a combination of the electrode potential principle and a cutting-edge maximum power point tracking algorithm, optimizing energy harvesting and ensuring that the system operates at peak efficiency. The harvested energy is efficiently stored within a supercapacitor, which subsequently serves as the primary power source for a highly energy-efficient System on a Chip (SoC). This SoC, in turn, is responsible for collecting and transmitting data related to light conditions and soil humidity. The data is transmitted via Bluetooth Low-Energy (BLE) technology, making it accessible for remote monitoring and analysis. Initial results from our research showcase the remarkable feasibility of the proposed system. We have successfully demonstrated its capability to extract energy from the environment, as evidenced by a fully functional prototype that relies solely on energy harvested through this method. A 330 µF capacitor has been charged in less than 3 min for the initial power-on of the whole system and less than 20 s after the initial startup, providing a 3 mA current to a standard LED for about 300 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma, N., Shamkuwar, M., Singh, I.: The history, present and future with IoT. In: Balas, V., Solanki, V., Kumar, R., Khari, M. (eds.) Internet of Things and Big Data Analytics for Smart Generation. Intelligent Systems Reference Library, vol. 154, pp. 27–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04203-5_3

  2. Adebayo, A., Chaubey, M., Numbu, L.: Industry 4.0: the fourth industrial revolution and how it relates to the application of Internet of Things (IoT). J. Multidisciplinary Eng. Sci. Stud. (JMESS) 5(2) (2019). http://www.jmess.org/wp-content/uploads/2019/02/JMESSP13420504.pdf

  3. Pantoli, L., Paolucci, R., Muttillo, M., Fusacchia, P., Leoni, A.: A multisensorial thermal anemometer system. In: Andò, B., Baldini, F., Di Natale, C., Marrazza, G., Siciliano, P. (eds.) Sensors. CNS 2016. LNEE, vol. 431, pp. 330–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-55077-0_42

  4. Bembe, M., Abu-Mahfouz, A., Masonta, M., Ngqondi, T.: A survey on low-power wide area networks for IOT applications. Telecommun. Syst. 71, 249–274 (2019). https://doi.org/10.1007/s11235-019-00557-9

    Article  Google Scholar 

  5. Muralidharan, N., Self, E.C., Nanda, J., Belharouak, I.: Next‐Generation Cobalt‐free cathodes – a prospective solution to the battery industry’s Cobalt Problem. In: Transition Metal Oxides for Electrochemical Energy Storage, pp. 33–53 (2022). https://doi.org/10.1002/9783527817252.ch3

  6. Piscitelli, G., Errico, V., Ricci, M., et al.: A low-cost energy-harvesting sensory headwear useful for tetraplegic people to drive home automation. AEU-Int. J. Electron. C. 107, 9–14 (2019). https://doi.org/10.1016/j.aeue.2019.05.015

    Article  Google Scholar 

  7. Leoni, A., Ulisse, I., Pantoli, L., et al.: Energy harvesting optimization for built-in power replacement of electronic multisensory architecture. AEU-Int. J. Electron. C. 107, 170–176 (2019). https://doi.org/10.1016/j.aeue.2019.05.002

    Article  Google Scholar 

  8. Menendez, O., Villacres, J., Rivera, R.G., Cheein, F.A.: Analyzing the capabilities of electric field energy harvesting using natural leaves. IEEE Access 9, 158852–158861 (2021). https://doi.org/10.1109/access.2021.3129717

    Article  Google Scholar 

  9. Calogero, G., Marco, G.D.: Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 92, 1341–1346 (2008). https://doi.org/10.1016/j.solmat.2008.05.007

    Article  Google Scholar 

  10. Hao, Z., Li, W., Hao, X.: Variations of electric potential in the xylem of tree trunks associated with water content rhythms. J. Exp. Bot. 72, 1321–1335 (2020). https://doi.org/10.1093/jxb/eraa492

    Article  Google Scholar 

  11. Sabatini, A., Leoni, A., Goncalves, G., et al.: Microsystem nodes for soil monitoring via an energy mapping network: a proof-of-concept preliminary study. Micromachines 13, 1440 (2022). https://doi.org/10.3390/mi13091440

    Article  Google Scholar 

  12. Steele, B.C., Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345–352 (2001). https://doi.org/10.1038/35104620

    Article  Google Scholar 

  13. Leoni, A., Ferri, G., Colaiuda, D., Stornelli, V.: Micro energy harvesting from the soil of indoor living plants. In: 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech) (2022). https://doi.org/10.23919/splitech55088.2022.9854259

  14. de Brito, M.A., Galotto, L., Sampaio, L.P., et al.: Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Industr. Electron. 60, 1156–1167 (2013). https://doi.org/10.1109/tie.2012.2198036

    Article  Google Scholar 

  15. Leoni, A., Pantoli, L.: Spice model identification technique of a cheap thermoelectric cell applied to DC/DC design with MPPT algorithm for low-cost, low-power energy harvesting. Appl. Sci. 9, 3744 (2019). https://doi.org/10.3390/app9183744

    Article  Google Scholar 

  16. Solic, P., Leoni, A., Colella, R., et al.: IOT-ready energy-autonomous parking sensor device. IEEE Internet Things J. 8, 4830–4840 (2021). https://doi.org/10.1109/jiot.2020.3031088

    Article  Google Scholar 

  17. Nordic Semiconductor nRF52840 Product Specification. In: Nordic Semiconductor Infocenter. https://infocenter.nordicsemi.com/index.jsp?topic=%2Fps_nrf52840%2Fkeyfeatures_html5.html. Accessed 25 Aug 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfiero Leoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leoni, A., Paolucci, R., Colaiuda, D., Stornelli, V., Ferri, G. (2024). IoT Battery-Less System for Plant Health Monitoring. In: Ciofi, C., Limiti, E. (eds) Proceedings of SIE 2023. SIE 2023. Lecture Notes in Electrical Engineering, vol 1113. Springer, Cham. https://doi.org/10.1007/978-3-031-48711-8_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48711-8_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48710-1

  • Online ISBN: 978-3-031-48711-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics