Skip to main content

ImageJ in Computational Fractal-Based Neuroscience: Pattern Extraction and Translational Research

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 36))

  • 319 Accesses

Abstract

To explore questions asked in neuroscience, neuroscientists rely heavily on the tools available. One such toolset is ImageJ, open-source, free, biological digital image analysis software. Open-source software has matured alongside of fractal analysis in neuroscience, and today ImageJ is not a niche but a foundation relied on by a substantial number of neuroscientists for work in diverse fields including fractal analysis. This is largely owing to two features of open-source software leveraged in ImageJ and vital to vigorous neuroscience: customizability and collaboration. With those notions in mind, this chapter’s aim is threefold: (1) it introduces ImageJ, (2) it outlines ways this software tool has influenced fractal analysis in neuroscience and shaped the questions researchers devote time to, and (3) it reviews a few examples of ways investigators have developed and used ImageJ for pattern extraction in fractal analysis. Throughout this chapter, the focus is on fostering a collaborative and creative mindset for translating knowledge of the fractal geometry of the brain into clinical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramoff M, Magalhaes P, Ram S. Image processing with image. J Biophoton Int. 2004;11:36–42.

    Google Scholar 

  2. Abramyuk A, Wolf G, Shakirin G, Haberland U, Tokalov S, Koch A, Appold S, Zöphel K, Abolmaali N. Preliminary assessment of dynamic contrast-enhanced CT implementation in pretreatment FDG-PET/CT for outcome prediction in head and neck tumors. Acta Radiol. 2010;51(7):793–9.

    Article  PubMed  Google Scholar 

  3. Anderson JR, Barrett SF, Wilcox MJ. The segmentation and visualization of a neuron in the housefly’s visual system. Biomed Sci Instrum. 2005;41:235–40.

    PubMed  Google Scholar 

  4. Andjelkovic J, Zivic N, Reljin B, Celebic V, Salom I. Application of multifractal analysis on medical images. WSEAS Trans Inf Sci Appl. 2008;5(11):12.

    Google Scholar 

  5. Andrews S, Gilley J, Coleman MP. Difference tracker: ImageJ plugins for fully automated analysis of multiple axonal transport parameters. J Neurosci Methods. 2010;193(2):281–7.

    Article  PubMed  Google Scholar 

  6. Bache-Wiig and Per Christian Henden. “Fractal Count”. Haugesund, Norway. 2004–2012. https://imagej.nih.gov/ij/plugins/download/misc/FractalCount_.java

  7. Barboriak DP, Padua AO, York GE, Macfall JR. Creation of DICOM – aware applications using ImageJ. J Digit Imaging. 2005;18(2):91–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bellis M, Metias S, Naugler C, Pollett A, Jothy S, Yousef GM. Digital pathology: attitudes and practices in the Canadian pathology community. J Pathol Informat. 2013;4:3.

    Article  Google Scholar 

  9. Bernard A, Campolmi N, He Z, Ha Thi BM, Piselli S, Forest F, Dumollard JM, Peoc’h M, Acquart S, Gain P, Thuret G. CorneaJ: an imageJ plugin for semi-automated measurement of corneal endothelial cell viability. Cornea. 2014;33(6):604–9.

    Article  PubMed  Google Scholar 

  10. Boudaoud A, Burian A, Borowska-Wykret D, Uyttewaal M, Wrzalik R, Kwiatkowska D, Hamant O. FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat Protoc. 2014;9(2):457–63.

    Article  CAS  PubMed  Google Scholar 

  11. Captur G, Muthurangu V, Cook C, Flett AS, Wilson R, Barison A, Sado DM, Anderson S, McKenna WJ, Mohun TJ, Elliott PM, Moon JC. Quantification of left ventricular trabeculae using fractal analysis. J Cardiovasc Magn Reson. 2013;15:36.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cardona A, Saalfeld S, Arganda I, Pereanu W, Schindelin J, Hartenstein V. Identifying neuronal lineages of Drosophila by sequence analysis of axon tracts. J Neurosci. 2010;30(22):7538–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cavallari M, Falco T, Frontali M, Romano S, Bagnato F, Orzi F. Fractal analysis reveals reduced complexity of retinal vessels in CADASIL. PLoS One. 2011;6(4):e19150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chothani P, Mehta V, Stepanyants A. Automated tracing of neurites from light microscopy stacks of images. Neuroinformatics 2011;9(2–3):263–78.

    Google Scholar 

  15. Collins TJ. ImageJ for microscopy. BioTechniques. 2007;43(1 Suppl):25–30.

    Article  PubMed  Google Scholar 

  16. Cornforth DJ, Tarvainen MP, Jelinek HF. How to calculate renyi entropy from heart rate variability, and why it matters for detecting cardiac autonomic neuropathy. Front Bioeng Biotechnol. 2014;34(2):1–8.

    Google Scholar 

  17. Davoudi B, Morrison M, Bizheva K, Yang VX, Dinniwell R, Levin W, Vitkin IA. Optical coherence tomography platform for microvascular imaging and quantification: initial experience in late oral radiation toxicity patients. J Biomed Opt. 2013;18(7):76008.

    Article  PubMed  Google Scholar 

  18. Deroulers C, Ameisen D, Badoual M, Gerin C, Granier A, Lartaud M. Analyzing huge pathology images with open source software. Diagn Pathol. 2013;8:92.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, Schmid B, Hutchinson JR, Shefelbine SJ. BoneJ: free and extensible bone image analysis in ImageJ. Bone. 2010;47(6):1076–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N. Advanced methods of microscope control using muManager software. J Biol Methods. 2014;1(2):e10.

    Article  PubMed  Google Scholar 

  21. Égerházi L, Smausz T, Bari F. Inverted fractal analysis of TiOx thin layers grown by inverse pulsed laser deposition. Appl Surf Sci. 2013;278:106–10.

    Article  Google Scholar 

  22. Esteban FJ, Sepulcre J, de Mendizabal NV, Goni J, Navas J, de Miras JR, Bejarano B, Masdeu JC, Villoslada P. Fractal dimension and white matter changes in multiple sclerosis. NeuroImage. 2007;36(3):543–9.

    Article  PubMed  Google Scholar 

  23. Falconer K. Fractal geometry: mathematical foundations and applications. Hoboken: Wiley; 2014.

    Google Scholar 

  24. Fanti Z, Martinez-Perez ME, De-Miguel FF. NeuronGrowth, a software for automatic quantification of neurite and filopodial dynamics from time-lapse sequences of digital images. Dev Neurobiol. 2011;71(10):870–81.

    Article  PubMed  Google Scholar 

  25. Ferreira TA, Blackman AV, Oyrer J, Jayabal S, Chung AJ, Watt AJ, Sjostrom PJ, van Meyel DJ. Neuronal morphometry directly from bitmap images. Nat Methods. 2014;11(10):982–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Girish V, Vijayalakshmi A. Affordable image analysis using NIH Image/ImageJ. Indian J Cancer. 2004;41(1):47.

    Article  CAS  PubMed  Google Scholar 

  27. Goni J, Sporns O, Cheng H, Aznárez-Sanado M, Wang Y, Josa S, Arrondo G, Mathews VP, Hummer TA, Kronenberger WG, Avena-Koenigsberger A, Saykin AJ, Pastor MA. Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility. NeuroImage. 2013;83:646–57.

    Article  PubMed  Google Scholar 

  28. González AM, Garcia T, Samper E, Rickmann M, Vaquero EC, Molero X. Assessment of the protective effects of oral tocotrienols in arginine chronic-like pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2011;301:G846–55.

    Article  PubMed  Google Scholar 

  29. Gutierrez RC, Hung J, Zhang Y, Kertesz AC, Espina FJ, Colicos MA. Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3. Neuroscience. 2009;162(1):208–21.

    Article  CAS  PubMed  Google Scholar 

  30. Hamida T, Babadagli T. Fluid-fluid interaction during miscible and immiscible displacement under ultrasonic waves. Eur Phys J B. 2007;60(4):447–62.

    Article  CAS  Google Scholar 

  31. Ho SY, Chao CY, Huang HL, Chiu TW, Charoenkwan P, Hwang E. NeurphologyJ: an automatic neuronal morphology quantification method and its application in pharmacological discovery. BMC Bioinformatics. 2011;12:230.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ignacio Arganda-Carreras AC, Kaynig V., Schindelin J. Trainable weka segmentation. 2011.

    Google Scholar 

  33. ImageJ Features. National Institutes of Health. 2015. http://rsb.info.nih.gov/ij/features.html

    Google Scholar 

  34. Jelinek H, Elston N, Zietsch B. Fractal analysis: pitfalls and revelations in neuroscience. In: Fractals in biology and medicine. Basel, Switzerland: Springer; 2005. p. 85–94.

    Chapter  Google Scholar 

  35. Jelinek HF, Karperien A. Microglia modelling and analysis using L-systems grammar. In: Encarnação P, Veloso A, editors. BIOSTEC 2008 international joint conference on biomedical engineering systems and technologies, Funchal, Madeira, Portugal, January 28–31, 2008. BIOSIGNALS 2008 international conference on bio-inspired systems and signal processing. Basel: Springer; 2008. p. 289–94.

    Google Scholar 

  36. Jelinek HF, Md Imam H, Al-Aubaidy H, Khandoker AH. Association of cardiovascular risk using non-linear heart rate variability measures with the Framingham risk score in a rural population. Front Physiol. 2013;186(4):1–8.

    Google Scholar 

  37. Karmonik C, York M, Grossman R, Kakkar E, Patel K, Haykal H, King D. An image analysis pipeline for the semi-automated analysis of clinical fMRI images based on freely available software. Comput Biol Med. 2010;40(3):279–87.

    Article  PubMed  Google Scholar 

  38. Karperien A. FracLac for ImageJ. Charles Sturt University. 2013.

    Google Scholar 

  39. Karperien A. FracLac for ImageJ: JavaDoc, source code, and jar. vol 7, 201501 edn. National Institutes of Health ImageJ Plugins. 2015.

    Google Scholar 

  40. Karperien A, Ahammer H, Jelinek HF. Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci. 2013;7:3.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Karperien A, Jelinek HF, Leandro JJG, Soares JVB, Cesar J, Roberto M, Luckie A. Automated detection of proliferative retinopathy in clinical practice. Clin Ophthalmol. 2008;2(1):109–22.

    PubMed  PubMed Central  Google Scholar 

  42. Kohn-Luque A, de Back W, Starruss J, Mattiotti A, Deutsch A, Perez-Pomares JM, Herrero MA. Early embryonic vascular patterning by matrix-mediated paracrine signalling: a mathematical model study. PLoS One. 2011;6(9):e24175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krippendorf BB, Lough J. Complete and rapid switch from light microscopy to virtual microscopy for teaching medical histology. Anat Rec B New Anat. 2005;285(1):19–25.

    Article  PubMed  Google Scholar 

  44. Landini G. Auto Threshold. v1.15 (19 Feb 2013) edn. 2013.

    Google Scholar 

  45. Landini G, Murray PI, Misson GP. Local connected fractal dimensions and lacunarity analyses of 60 degrees fluorescein angiograms. Invest Ophthalmol Vis Sci. 1995;36(13):2749–55.

    CAS  PubMed  Google Scholar 

  46. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, Loranger B, Moore J, Neves C, Macdonald D, Tarkowska A, Sticco C, Hill E, Rossner M, Eliceiri KW, Swedlow JR. Metadata matters: access to image data in the real world. J Cell Biol. 2010;189(5):777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. LISTSERV 16.0 – IMAGEJ List at LIST.NIH.GOV. Center for Information Technology, US National Institutes of Health. https://list.nih.gov/cgi-bin/wa.exe?A0=IMAGEJ. Accessed 23 Jan 2015.

  48. Longair MH, Baker DA, Armstrong JD. Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics. 2011;27(17):2453–4.

    Article  CAS  PubMed  Google Scholar 

  49. Losa GN, Theo F, Merlini D, Weibel ER, editors. Fractals in biology and medicine, vol. II. Mathematics and biosciences in interaction. Basel: Birkhauser; 1997.

    Google Scholar 

  50. Mailly P, Haber SN, Groenewegen HJ, Deniau JM. A 3D multi-modal and multi-dimensional digital brain model as a framework for data sharing. J Neurosci Methods. 2010;194(1):56–63.

    Article  PubMed  Google Scholar 

  51. Mancardi D, Varetto G, Bucci E, Maniero F, Guiot C. Fractal parameters and vascular networks: facts & artifacts. Theor Biol Med Model. 2008;5:12.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mandelbrot E, Hayakawa. Exactly self-similar left-sided multifractal measures. Phys Rev A. 1990;42(8):4528–36.

    Article  CAS  PubMed  Google Scholar 

  53. Mandelbrot BB. The fractal geometry of nature. Updated and augmented. edn. New York: Freeman WH; 1983.

    Book  Google Scholar 

  54. Meijering E. Neuron tracing in perspective. Cytom Part A: J Int Soc Anal Cytol. 2010;77(7):693–704.

    Article  Google Scholar 

  55. Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M. Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A: J Int Soc Anal Cytol. 2004;58(2):167–76.

    Article  CAS  Google Scholar 

  56. Mutterer J, Rasband W. ImageJ macro language programmer’s reference guide v1.46d.

    Google Scholar 

  57. NIH/NLM. PubMed Central. U.S. National Institutes of Health’s National Library of Medicine. 2015. http://www.ncbi.nlm.nih.gov/pmc/?term=ImageJ. Accessed 5 Aug 2015.

  58. Pani G, De Vos WH, Samari N, de Saint-Georges L, Baatout S, Van Oostveldt P, Benotmane MA. MorphoNeuroNet: an automated method for dense neurite network analysis. Cytom Part A: J Int Soc Anal Cytol. 2014;85(2):188–99.

    Article  Google Scholar 

  59. Pantic I, Dacic S, Brkic P, Lavrnja I, Pantic S, Jovanovic T, Pekovic S. Application of fractal and grey level co-occurrence matrix analysis in evaluation of brain corpus callosum and cingulum architecture. Microsc Microanal. 2014;20(5):1373–81.

    Article  CAS  PubMed  Google Scholar 

  60. Park S, Pantanowitz L, Parwani AV. Digital imaging in pathology. Clin Lab Med. 2012;32(4):557–84.

    Article  PubMed  Google Scholar 

  61. Patton N, Aslam TM, MacGillivray T, Deary IJ, Dhillon B, Eikelboom RH, Yogesan K, Constable IJ. Retinal image analysis: concepts, applications and potential. Prog Retin Eye Res. 2006;25(1):99–127.

    Article  PubMed  Google Scholar 

  62. Peng T, Wang L, Bayer C, Conjeti S, Baust M, Nava N. Shading correction for whole slide image using low rank and sparse decomposition. Med Image Comput Comput Assist Interv. 2014;17(Pt 1):33–40.

    PubMed  Google Scholar 

  63. Scorcioni R, Polavaram S, Ascoli GA. L-measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat Protoc. 2008;3(5):866–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pool M, Thiemann J, Bar-Or A, Fournier AE. NeuriteTracer: a novel ImageJ plugin for automated quantification of neurite outgrowth. J Neurosci Methods. 2008;168(1):134–9.

    Article  PubMed  Google Scholar 

  65. Prasad K, Prabhu GK. Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research-a review. J Med Syst. 2012;36(4):2621–31.

    Article  PubMed  Google Scholar 

  66. The quest for quantitative microscopy. The quest for quantitative microscopy. Nat Methods. 2012;9(7):627.

    Article  Google Scholar 

  67. Rasband W. Basic Concepts. US National Institutes of Health. 2015. http://rsb.info.nih.gov/ij/docs/concepts.html. Accessed 22 Jan 2015.

  68. Rasband W. Plugins. U.S. National Institutes of Health. 2015. http://rsb.info.nih.gov/ij/plugins/

  69. Reishofer G, Koschutnig K, Enzinger C, Ebner F, Ahammer H. Fractal dimension and vessel complexity in patients with cerebral arteriovenous malformations. PLoS One. 2012;7(7):e41148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reuden C. ImageJ Net. http://imagej.net/ImageJ. 2015.

  71. Rueden CT, Eliceiri KW. Visualization approaches for multidimensional biological image data. BioTechniques. 2007;43(1 Suppl):33–6.

    Google Scholar 

  72. Sage D, Prodanov D, Tinevez J-Y, Schindelin J. MIJ: making interoperability between ImageJ and Matlab possible. In: Paper presented at the ImageJ User & Developer Conference, Luxembourg. 2012. pp. 24–26.

    Google Scholar 

  73. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.

    Article  CAS  PubMed  Google Scholar 

  74. Schmid B, Schindelin J, Cardona A, Longair M, Heisenberg M. A high-level 3D visualization API for Java and ImageJ. BMC Bioinforma. 2010;11:274.

    Article  Google Scholar 

  75. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sheets KG, Jun B, Zhou Y, Zhu M, Petasis NA, Gordon WC, Bazan NG. Microglial ramification and redistribution concomitant with the attenuation of choroidal neovascularization by neuroprotectin D1. Mol Vis. 2013;19:1747–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith TG Jr, Lange GD, Marks WB. Fractal methods and results in cellular morphology – dimensions, lacunarity and multifractals. J Neurosci Methods. 1996;69(2):123–36.

    Article  PubMed  Google Scholar 

  78. Smith TG Jr, Marks WB, Lange GD, Sheriff WH Jr, Neale EA. A fractal analysis of cell images. J Neurosci Methods. 1989;27(2):173–80.

    Article  PubMed  Google Scholar 

  79. Ţălu Ş, Giovanzana S. Image analysis of the normal human retinal vasculature using fractal geometry. Int J Bioflux Soc. 2012;4(1):5.

    Google Scholar 

  80. Trevino J, Liew SF, Noh H, Cao H, Dal Negro L. Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals. Opt Express. 2012;20(3):3015–33.

    Article  PubMed  Google Scholar 

  81. Wright SN, Kochunov P, Mut F, Bergamino M, Brown KM, Mazziotta JC, Toga AW, Cebral JR, Ascoli GA. Digital reconstruction and morphometric analysis of human brain arterial vasculature from magnetic resonance angiography. NeuroImage. 2013;82:170–81.

    Article  PubMed  Google Scholar 

  82. Xu Y, Qian C, Pan L, Wang B, Lou C. Comparing monofractal and multifractal analysis of corrosion damage evolution in reinforcing bars. PLoS One. 2012;7(1):e29956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zmeskal O, Bzatek T, Nezadal M, Buchnicek M. HarFA: Harmonic and Fractal Image Analysis, Brno University of Technology, Czech Republic. 2001. http://www.fch.vut.cz/lectures/imagesci/main_menu.php

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karperien, A.L., Jelinek, H.F. (2024). ImageJ in Computational Fractal-Based Neuroscience: Pattern Extraction and Translational Research. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Advances in Neurobiology, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-47606-8_40

Download citation

Publish with us

Policies and ethics