Skip to main content

Fractality of Cranial Sutures

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 36))

  • 278 Accesses

Abstract

It has long been known that skull suture has a typical fractal structure. Although the fractal dimension has been utilized to assess morphology, the mechanism of the fractal structure formation remains to be elucidated. Recent advances in the mathematical modeling of biological pattern formation provided useful frameworks for understanding this mechanism. This chapter describes how various proposed mechanisms tried to explain the formation of fractal structures in cranial sutures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadler TW. Langman’s medical embryology. Plast Reconstructive Surg 1988;81:131

    Article  Google Scholar 

  2. Drake RL, Wayne Vogl A, Mitchell AWM. Gray’s Anatomy for students. 4th ed. Amsterdam: Elsevier; 2019

    Google Scholar 

  3. Long CA. Intricate sutures as fractal curves. J Morphol 1985;185:285–295

    Article  PubMed  Google Scholar 

  4. Yayoi M, Yohro T, Masuda Y, Yohro T. Are there any regularities in cranial sutures? Okajimas folia anatomica Japonica 1987;64:39

    Article  Google Scholar 

  5. Long CA, Long JE. Fractal dimensions of cranial sutures and waveforms. Acta anatomica 1992;145:201–6

    Article  CAS  PubMed  Google Scholar 

  6. Gibert J, Palmqvist P. Fractal analysis of the Orce skull sutures. J Hum Evol 1995;28:561–75

    Article  Google Scholar 

  7. Yu JC, Wright RL, Williamson MA, Braselton JP, Abell ML. A fractal analysis of human cranial sutures. Cleft Palate-Craniofacial J 2003;40:409–15

    Article  Google Scholar 

  8. Lynnerup N, Jacobsen JCB. Brief communication: age and fractal dimensions of human sagittal and coronal sutures. Am J Phys Anthropol 2003;121:332–36

    Article  PubMed  Google Scholar 

  9. Górski AZ, Skrzat J. Error estimation of the fractal dimension measurements of cranial sutures. J Anat 2006;208:353–59

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cohen M. Craniosynostosis: diagnosis, evaluation, and management. 2nd ed. Oxford: Oxford University Press; 2000

    Google Scholar 

  11. Di Ieva A, Bruner E, Davidson J, Pisano P, Haider T, Stone SS, Cusimano MD, Tschabitscher M, Grizzi F. Cranial sutures: a multidisciplinary review. Child’s Nervous Syst 2013;29:893–905

    Article  Google Scholar 

  12. Johnson D, Wilkie AOM. Craniosynostosis. Eur J Hum Genet 2011;19:369–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilkie AOM, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David DJ, Pulleyn LJ, Rutland P, Malcolm S, Winter RM, Reardon W. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Gen 1995;9:165–72

    Article  CAS  Google Scholar 

  14. Johnson D, Horsley SW, Moloney DM, Oldridge M, Twigg SRF, Walsh S, Barrow M, Njølstad PR, Kunz J, Ashworth GJ, Wall SA, Kearney L, Wilkie AOM. A comprehensive screen for twist mutations in patients with craniosynostosis identifies a new microdeletion syndrome of chromosome band 7p21.1. Am J Hum Genet 1998;63:1282–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Twigg SRF. Mutations of ephrin-b1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci USA 2004;101:8652–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miura T, Perlyn CA, Kinboshi M, Ogihara N, Kobayashi-Miura M, Morriss-Kay GM, Shiota K. Mechanism of skull suture maintenance and interdigitation. J Anat 2009;215:642–55

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moss MLL. Growth of the calvaria in the rat. The determination of osseous morphology. Am J Anat 1954;94:333–61

    Article  CAS  PubMed  Google Scholar 

  18. Moss MLL. Relative growth of the human fetal skeleton, cranial and postcranial. Ann New York Acad Sci 1955;63:528–36

    Article  Google Scholar 

  19. Moss MLL. Experimental alteration of sutural area morphology. Anat Record Part A Discoveries Mol Cell Evol Biol 1957;127:569–89

    Article  CAS  Google Scholar 

  20. Moss MLL. Rotations of the cranial components in the growing rat and their experimental alteration. Cells Tissues Organs 1958;32:65–86

    Article  CAS  Google Scholar 

  21. Moss MLL. Fusion of the frontal suture in the rat. Am J Anat 1958;102:141–65

    Article  CAS  PubMed  Google Scholar 

  22. Moss MLL. The pathogenesis of premature cranial synostosis in man. Acta Anatomica 1959;37:351–70

    Article  CAS  PubMed  Google Scholar 

  23. Moss MLL. Inhibition and stimulation of sutural fusion in the rat calvaria. Anat Record Part A Discoveries Mol Cell Evol Biol 1960;136:457–67

    Article  CAS  Google Scholar 

  24. Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G, Jolla L, St Louis. A twist code determines the onset of osteoblast differentiation bone disease program of Texas. Dev Cell 2004;6:423–35

    Article  CAS  PubMed  Google Scholar 

  25. Rice R, Rice DPC, Olsen BR, Thesleff I. Progression of calvarial bone development requires FOXC1 regulation of MSX2 and ALX4. Dev Biol 2003;262:75–87

    Article  CAS  PubMed  Google Scholar 

  26. Antonopoulou I, Mavrogiannis LA, Wilkie AOM, Morriss-Kay GM. Alx4 and Msx2 play phenotypically similar and additive roles in skull vault differentiation. J Anat 2004;204:487–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rice R, Rice DPC, Thesleff I. Foxc1 integrates Fgf and Bmp signalling independently of twist or noggin during calvarial bone development. Developmental Dynamics, 233:847–852, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Park MH, Shin HI, Choi JY, Nam SH, Kim YJ, Kim HJ, Ryoo HM. Differential expression patterns of Runx2 isoforms in cranial suture morphogenesis. J Bone Mineral Res 2001;16:885–92

    Article  CAS  Google Scholar 

  29. Holleville N, Quilhac A, Bontoux M, Monsoro-Burq AH. Bmp signals regulate dlx5 during early avian skull development. Dev Biol 2003;257:177–89

    Article  CAS  PubMed  Google Scholar 

  30. Roth DA, Longaker MT, Mccarthy JG, Rosen DM, Mcmullen HF, Levine JP, Sung J, Gold LI. Studies in cranial suture biology: Part I. Increased immunoreactivity for TGF-b isoforms (b1, b2, and b3) during rat cranial suture fusion. J Bone Mineral Res 1997;12:311–21

    Article  CAS  Google Scholar 

  31. Iseki S, Wilkie AO, Heath JK, Ishimaru T, Eto K, Morriss-Kay GM. Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied fgf2. Development (Cambridge, England) 1997;124:3375–84

    Google Scholar 

  32. Mehrara BJ, Mackool RJ, McCarthy JG, Gittes GK, Longaker MT. Immunclocalization of basic fibroblast growth factor and fibroblast growth factor receptor-1 and receptor-2 in rat cranial sutures. Plast Reconstructive Surg 1998;102:1805–17

    Article  CAS  Google Scholar 

  33. Kim HJ, Rice DP, Kettunen PJ, Thesleff I. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development (Cambridge, England) 1998;125:1241–51

    Google Scholar 

  34. Opperman LA, Chhabra A, Nolen AA, Bao Y, Ogle RC. Dura matter maintains rat cranial sutures in vitro by regulating suture cell proliferation and collagen production. J Craniofacial Genet Dev 1998;18:150–8

    CAS  Google Scholar 

  35. Jaslow CR. Mechanical properties of cranial sutures. J Biomech 1990;23:313–21

    Article  CAS  PubMed  Google Scholar 

  36. Anton SC, Jaslow CR, Swartz SM. Sutural complexity in artificially deformed human (homo sapiens) crania. J Morphol 1992;214:321–32

    Article  CAS  PubMed  Google Scholar 

  37. Hartwig WC. Fractal analysis of sagittal suture morphology. J Morphol 1991;210:289–98

    Article  PubMed  Google Scholar 

  38. Kwak KH, Kim SS, Kim YI, Kim YD. Quantitative evaluation of midpalatal suture maturation via fractal analysis. Korean J Orthodontics 2016;46:323–30

    Article  Google Scholar 

  39. Mandelbrot B. The fractal geometry of nature. New York City: Times Books; 1982

    Google Scholar 

  40. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9:676–82

    Article  CAS  PubMed  Google Scholar 

  41. Eden M. A two-dimensional growth process. Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1961;4:223–39

    Google Scholar 

  42. Witten TA, Sander LM. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 1981;47:1400–3

    Article  CAS  Google Scholar 

  43. Kondo S, Miura T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 2010;329:1616–20

    Article  CAS  PubMed  Google Scholar 

  44. Edwards SF, Wilkinson DR. The surface statistics of a granular aggregate. Proc R Soc London A Math Phys Sci 1982;381:17–31

    Google Scholar 

  45. Oota Y, Nagamine T, Ono K, Miyazima S. A two-dimensional model for sagittal suture of cranium. Forma 2004;19:197–205

    Google Scholar 

  46. Oota Y, Ono K, Miyazima S. 3d modeling for sagittal suture. Phys A Stat Mech Its Appl 2006;359:538–546

    Article  CAS  Google Scholar 

  47. Yoshimura K, Kobayashi R, Ohmura T, Kajimoto Y, Miura T. A new mathematical model for pattern formation by cranial sutures. J Theor Biol 2016;408:66–74

    Article  PubMed  Google Scholar 

  48. Shibusawa N, Endo Y, Morimoto N, Takahashi I, Miura T. Mathematical modeling of palatal suture pattern formation: morphological differences between sagittal and palatal sutures. Sci Rep 2021;11:8995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ohta T, Mimura M, Kobayashi R. Higher-dimensional localized patterns in excitable media. Phys D Nonlin Phenom 1989;34:115–44

    Article  Google Scholar 

  50. Zollikofer CPE, Weissmann JD. A bidirectional interface growth model for cranial interosseous suture morphogenesis. J Anat 2011;219:100–14

    Article  PubMed  PubMed Central  Google Scholar 

  51. Byron CD, Borke J, Yu JC, Pashley D, Wingard CJ, Hamrick M. Effects of increased muscle mass on mouse sagittal suture morphology and mechanics. Anat Record Part A Discoveries Mol Cell Evol Biol 2004;279A:676–684

    Article  Google Scholar 

  52. Khonsari RH, Olivier J, Vigneaux P, Sanchez S, Tafforeau P, Ahlberg PE, Di Rocco F, Bresch D, Corre P, Ohazama A, Sharpe PT, Calvez V. A mathematical model for mechanotransduction at the early steps of suture formation. Proc R Soc B Biol Sci 2013;280:100–114

    Google Scholar 

  53. Naroda Y, Endo Y, Yoshimura K, Ishii H, Ei S-I, Miura T. Noise-induced scaling in skull suture interdigitation. PLOS ONE 2020;15:e0235802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu JC, Lucas JH, Fryberg K, Borke JL. Extrinsic tension results in fgf-2 release, membrane permeability change, and intracellular ca++ increase in immature cranial sutures. J Craniofacial Surg 2001;12:391

    Article  CAS  Google Scholar 

  55. Farmer DT, Mlcochova H, Zhou Y, Koelling N, Wang G, Ashley N, Bugacov H, Chen H-J, Parvez R, Tseng K-C, Merrill AE, Maxson RE, Wilkie AOM, Gage Crump J, Twigg SRF. The developing mouse coronal suture at single-cell resolution. Nat Commun 2021;12:1–14

    Article  Google Scholar 

  56. Holmes G, Gonzalez-Reiche AS, Saturne M, Motch Perrine SM, Zhou X, Borges AC, Shewale B, Richtsmeier JT, Zhang B, van Bakel H, Jabs EW. Single-cell analysis identifies a key role for Hhip in murine coronal suture development. Nat Commun 2021;12:7132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tower RJ, Li Z, Cheng Y-H, Wang X-W, Rajbhandari L, Zhang Q, Negri S, Uytingco CR, Venkatesan A, Zhou F-Q, Cahan P, James AW, Clemens TL. Spatial transcriptomics reveals a role for sensory nerves in preserving cranial suture patency through modulation of BMP/TGF\(\beta \) signaling. Proc Natl Acad Sci 2021;118:e2103087118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Miura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miura, T. (2024). Fractality of Cranial Sutures. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Advances in Neurobiology, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-47606-8_11

Download citation

Publish with us

Policies and ethics