Skip to main content

Unsupervised Anomaly Detection in Medical Images with a Memory-Augmented Multi-level Cross-Attentional Masked Autoencoder

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Abstract

Unsupervised anomaly detection (UAD) aims to find anomalous images by optimising a detector using a training set that contains only normal images. UAD approaches can be based on reconstruction methods, self-supervised approaches, and Imagenet pre-trained models. Reconstruction methods, which detect anomalies from image reconstruction errors, are advantageous because they do not rely on the design of problem-specific pretext tasks needed by self-supervised approaches, and on the unreliable translation of models pre-trained from non-medical datasets. However, reconstruction methods may fail because they can have low reconstruction errors even for anomalous images. In this paper, we introduce a new reconstruction-based UAD approach that addresses this low-reconstruction error issue for anomalous images. Our UAD approach, the memory-augmented multi-level cross-attentional masked autoencoder (MemMC-MAE), is a transformer-based approach, consisting of a novel memory-augmented self-attention operator for the encoder and a new multi-level cross-attention operator for the decoder. MemMC-MAE masks large parts of the input image during its reconstruction, reducing the risk that it will produce low reconstruction errors because anomalies are likely to be masked and cannot be reconstructed. However, when the anomaly is not masked, then the normal patterns stored in the encoder’s memory combined with the decoder’s multi-level cross-attention will constrain the accurate reconstruction of the anomaly. We show that our method achieves SOTA anomaly detection and localisation on colonoscopy, pneumonia, and covid-19 chest x-ray datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Scale-space autoencoders for unsupervised anomaly segmentation in brain MRI. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_54

  2. Borgli, H., et al.: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7(1), 1–14 (2020)

    Article  Google Scholar 

  3. Chen, Y., Tian, Y., Pang, G., Carneiro, G.: Deep one-class classification via interpolated gaussian descriptor. arXiv preprint arXiv:2101.10043 (2021)

  4. Chen, Y., et al.: Bomd: bag of multi-label descriptors for noisy chest x-ray classification. arXiv preprint arXiv:2203.01937 (2022)

  5. Defard, T., Setkov, A., Loesch, A., Audigier, R.: Padim: a patch distribution modeling framework for anomaly detection and localization. arXiv preprint arXiv:2011.08785 (2020)

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

  8. Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: ICCV, pp. 1705–1714 (2019)

    Google Scholar 

  9. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

  10. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)

    Google Scholar 

  11. Li, C.L., et al.: Cutpaste: self-supervised learning for anomaly detection and localization. In: CVPR, pp. 9664–9674 (2021)

    Google Scholar 

  12. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  13. Liu, F., Tian, Y., Cordeiro, F.R., Belagiannis, V., Reid, I., Carneiro, G.: Noisy label learning for large-scale medical image classification. arXiv preprint arXiv:2103.04053 (2021)

  14. Liu, F., et al.: Self-supervised mean teacher for semi-supervised chest x-ray classification. arXiv preprint arXiv:2103.03629 (2021)

  15. Liu, F., et al.: ACPL: anti-curriculum pseudo-labelling for semi-supervised medical image classification. In: CVPR (2022)

    Google Scholar 

  16. Liu, Y., et al.: Photoshopping colonoscopy video frames. In: ISBI, pp. 1–5 (2020)

    Google Scholar 

  17. Liu, Y., et al.: Translation consistent semi-supervised segmentation for 3d medical images. arXiv preprint arXiv:2203.14523 (2022)

  18. Luo, Y., et al.: Harvard glaucoma fairness: a retinal nerve disease dataset for fairness learning and fair identity normalization. arXiv preprint arXiv:2306.09264 (2023)

  19. LZ, C.T.P., et al.: Computer-aided diagnosis for characterisation of colorectal lesions: a comprehensive software including serrated lesions. Gastrointest. Endosc. (2020)

    Google Scholar 

  20. Martins, P.H., Marinho, Z., Martins, A.F.: Infinity-former: infinite memory transformer. arXiv preprint arXiv:2109.00301 (2021)

  21. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

  22. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362 (2019)

    Google Scholar 

  23. Perera, P., Nallapati, R., Xiang, B.: Ocgan: one-class novelty detection using gans with constrained latent representations. In: CVPR, pp. 2898–2906 (2019)

    Google Scholar 

  24. Reiss, T., Cohen, N., Bergman, L., Hoshen, Y.: Panda: adapting pretrained features for anomaly detection and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2806–2814 (2021)

    Google Scholar 

  25. Schlegl, T., et al.: f-anogan: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  26. Seeböck, P., et al.: Exploiting epistemic uncertainty of anatomy segmentation for anomaly detection in retinal oct. IEEE Trans. Med. Imaging 39(1), 87–98 (2019)

    Article  Google Scholar 

  27. Shi, M., et al.: Artifact-tolerant clustering-guided contrastive embedding learning for ophthalmic images in glaucoma. IEEE J. Biomed. Health Inf. (2023)

    Google Scholar 

  28. Sohn, K., Li, C.L., Yoon, J., Jin, M., Pfister, T.: Learning and evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578 (2020)

  29. Tian, Y., et al.: Few-shot anomaly detection for polyp frames from colonoscopy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 274–284. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_27

  30. Tian, Y., et al.: Contrastive transformer-based multiple instance learning for weakly supervised polyp frame detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, pp. 88–98. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_9

  31. Tian, Y., et al.: Constrained contrastive distribution learning for unsupervised anomaly detection and localisation in medical images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 128–140. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_13

  32. Tian, Y., et al.: One-stage five-class polyp detection and classification. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 70–73. IEEE (2019)

    Google Scholar 

  33. Tian, Y., et al.: Pixel-wise energy-biased abstention learning for anomaly segmentation on complex urban driving scenes. arXiv preprint arXiv:2111.12264 (2021)

  34. Tian, Y., et al.: Self-supervised multi-class pre-training for unsupervised anomaly detection and segmentation in medical images. arXiv preprint arXiv:2109.01303 (2021)

  35. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  36. Venkataramanan, S., Peng, K.-C., Singh, R.V., Mahalanobis, A.: Attention guided anomaly localization in images. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 485–503. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_29

  37. Wang, L., Lin, Z.Q., Wong, A.: Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Sci. Rep. 10(1), 1–12 (2020)

    Google Scholar 

  38. Wang, Z., et al.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems and Computers, 2003. vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  39. Zhao, H., et al.: Anomaly detection for medical images using self-supervised and translation-consistent features. IEEE Trans. Med. Imaging 40(12), 3641–3651 (2021)

    Google Scholar 

  40. Zhou, Z., Rahman S., Md Mahfuzur, Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y. et al. (2024). Unsupervised Anomaly Detection in Medical Images with a Memory-Augmented Multi-level Cross-Attentional Masked Autoencoder. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14349. Springer, Cham. https://doi.org/10.1007/978-3-031-45676-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45676-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45675-6

  • Online ISBN: 978-3-031-45676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics