Skip to main content

Age-Invariant Face Recognition Using Face Feature Vectors and Embedded Prototype Subspace Classifiers

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14124))

Abstract

One of the major difficulties in face recognition while comparing photographs of individuals of different ages is the influence of age progression on their facial features. As a person ages, the face undergoes many changes, such as geometrical changes, changes in facial hair, and the presence of glasses, among others. Although biometric markers like computed face feature vectors should ideally remain unchanged by such factors, face recognition becomes less reliable as the age range increases. Therefore, this investigation was carried out to examine how the use of Embedded Prototype Subspace Classifiers could improve face recognition accuracy when dealing with age-related variations using face feature vectors only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 35, 99–110 (1943)

    MathSciNet  MATH  Google Scholar 

  2. Deb, D., Aggarwal, D., Jain, A.K.: Identifying missing children: Face age-progression via deep feature aging. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 10540–10547 (2021). https://doi.org/10.1109/ICPR48806.2021.9411913

  3. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  4. Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: Retinaface: single-stage dense face localisation in the wild (2019). https://doi.org/10.48550/ARXIV.1905.00641, https://arxiv.org/abs/1905.00641

  5. Duong, C., Quach, K., Luu, K., Le, T., Savvides, M.: Temporal non-volume preserving approach to facial age-progression and age-invariant face recognition. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3755–3763. IEEE Computer Society, Los Alamitos, CA, USA (2017). https://doi.org/10.1109/ICCV.2017.403, https://doi.ieeecomputersociety.org/10.1109/ICCV.2017.403

  6. Geng, X., Zhou, Z., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2234–2240 (2007). https://doi.org/10.1109/TPAMI.2007.70733

    Article  Google Scholar 

  7. Gong, D., Li, Z., Lin, D., Liu, J., Tang, X.: Hidden factor analysis for age invariant face recognition. In: 2013 IEEE International Conference on Computer Vision, pp. 2872–2879 (2013). https://doi.org/10.1109/ICCV.2013.357

  8. Gong, D., Li, Z., Tao, D., Liu, J., Li, X.: A maximum entropy feature descriptor for age invariant face recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5289–5297 (2015). https://doi.org/10.1109/CVPR.2015.7299166

  9. Hast, A.: Magnitude of semicircle tiles in Fourier-space : a handcrafted feature descriptor for word recognition using embedded prototype subspace classifiers. J. WSCG 30(1–2), 82–90 (2022). https://doi.org/10.24132/JWSCG.2022.10

  10. Hast, A., Lind, M.: Ensembles and cascading of embedded prototype subspace classifiers. J. WSCG 28(1/2), 89–95 (2020). https://doi.org/10.24132/JWSCG.2020.28.11

    Article  Google Scholar 

  11. Hast, A., Lind, M., Vats, E.: Embedded prototype subspace classification: a subspace learning framework. In: Vento, M., Percannella, G. (eds.) CAIP 2019. LNCS, vol. 11679, pp. 581–592. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29891-3_51

    Chapter  Google Scholar 

  12. Hast, A., Vats, E.: Word recognition using embedded prototype subspace classifiers on a new imbalanced dataset. J. WSCG 29(1–2), 39–47 (2021). https://wscg.zcu.cz/WSCG2021/2021-J-WSCG-1-2.pdf

  13. Huang, Z., Zhang, J., Shan, H.: When age-invariant face recognition meets face age synthesis: a multi-task learning framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7282–7291 (2021)

    Google Scholar 

  14. Huang, Z., Zhang, J., Shan, H.: When age-invariant face recognition meets face age synthesis: a multi-task learning framework and a new benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 45, 7917–7932 (2022)

    Article  Google Scholar 

  15. InsightFace: Insightface (2023). https://insightface.ai. Accessed 30 Feb 2023

  16. Kohonen, T., Lehtiö, P., Rovamo, J., Hyvärinen, J., Bry, K., Vainio, L.: A principle of neural associative memory. Neuroscience 2(6), 1065–1076 (1977)

    Article  Google Scholar 

  17. Kohonen, T., Oja, E.: Fast adaptive formation of orthogonalizing filters and associative memory in recurrent networks of neuron-like elements. Biol. Cybern. 21(2), 85–95 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kohonen, T., Reuhkala, E., Mäkisara, K., Vainio, L.: Associative recall of images. Biol. Cybern. 22(3), 159–168 (1976)

    Article  Google Scholar 

  19. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laaksonen, J.: Subspace classifiers in recognition of handwritten digits. G4 monografiaväitöskirja, Helsinki University of Technology (1997). https://urn.fi/urn:nbn:fi:tkk-001249

  21. Lanitis, A., Taylor, C., Cootes, T.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002). https://doi.org/10.1109/34.993553

    Article  Google Scholar 

  22. Li, Z., Gong, D., Li, X., Tao, D.: Aging face recognition: a hierarchical learning model based on local patterns selection. IEEE Trans. Image Process. 25(5), 2146–2154 (2016). https://doi.org/10.1109/TIP.2016.2535284

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Z., Park, U., Jain, A.K.: A discriminative model for age invariant face recognition. IEEE Trans. Inf. Forensics Secur. 6(3), 1028–1037 (2011). https://doi.org/10.1109/TIFS.2011.2156787

    Article  Google Scholar 

  24. Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: A study of face recognition as people age. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007). https://doi.org/10.1109/ICCV.2007.4409069

  25. Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: Face verification across age progression using discriminative methods. IEEE Trans. Inf. Forensics Secur. 5(1), 82–91 (2010). https://doi.org/10.1109/TIFS.2009.2038751

    Article  Google Scholar 

  26. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  27. Mahalingam, G., Kambhamettu, C.: Age invariant face recognition using graph matching. In: 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–7 (2010). https://doi.org/10.1109/BTAS.2010.5634496

  28. McInnes, L., Healy, J.: UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. ArXiv e-prints (2018)

    Google Scholar 

  29. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: Agedb: The first manually collected, in-the-wild age database. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1997–2005 (2017). https://doi.org/10.1109/CVPRW.2017.250

  30. Oja, E., Kohonen, T.: The subspace learning algorithm as a formalism for pattern recognition and neural networks. In: IEEE 1988 International Conference on Neural Networks, vol. 1, pp. 277–284 (1988). https://doi.org/10.1109/ICNN.1988.23858

  31. Park, U., Tong, Y., Jain, A.K.: Age-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 947–954 (2010). https://doi.org/10.1109/TPAMI.2010.14

    Article  Google Scholar 

  32. Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, pp. 387–394 (2006). https://doi.org/10.1109/CVPR.2006.187

  33. Sawant, M.M., Bhurchandi, K.M.: Age invariant face recognition: a survey on facial aging databases, techniques and effect of aging. Artif. Intell. Rev. 52, 981–1008 (2019). https://doi.org/10.1007/s10462-018-9661-z

    Article  Google Scholar 

  34. Serengil, S.I., Ozpinar, A.: Lightface: a hybrid deep face recognition framework. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 23–27. IEEE (2020). https://doi.org/10.1109/ASYU50717.2020.9259802

  35. Serengil, S.I., Ozpinar, A.: Hyperextended lightface: a facial attribute analysis framework. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–4. IEEE (2021). https://doi.org/10.1109/ICEET53442.2021.9659697

  36. Serengil, S.I., Ozpinar, A.: An evaluation of SQL and NOSQL databases for facial recognition pipelines. https://www.cambridge.org/engage/coe/article-details/63f3e5541d2d184063d4f569 (2023). 10.33774/coe-2023-18rcn, https://doi.org/10.33774/coe-2023-18rcn. preprint

  37. Wang, Y., et al.: Orthogonal deep features decomposition for age-invariant face recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision - ECCV 2018, pp. 764–779. Springer, Cham (2018)

    Chapter  Google Scholar 

  38. Watanabe, S., Pakvasa, N.: Subspace method in pattern recognition. In: 1st International Joint Conference on Pattern Recognition, Washington DC. pp. 25–32 (1973)

    Google Scholar 

  39. Watanabe, W., Lambert, P.F., Kulikowski, C.A., Buxto, J.L., Walker, R.: Evaluation and selection of variables in pattern recognition. In: Tou, J. (ed.) Computer and Information Sciences, vol. 2, pp. 91–122. Academic Press, New York (1967)

    Google Scholar 

  40. Xu, C., Liu, Q., Ye, M.: Age invariant face recognition and retrieval by coupled auto-encoder networks. Neurocomputing 222, 62–71 (2017)

    Article  Google Scholar 

  41. Yan, C., et al.: Age-invariant face recognition by multi-feature fusionand decomposition with self-attention. ACM Trans. Multimedia Comput. Commun. Appl. 18(1s) (2022). https://doi.org/10.1145/3472810

  42. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch (2014). https://doi.org/10.48550/ARXIV.1411.7923. https://arxiv.org/abs/1411.7923

  43. Zheng, T., Deng, W., Hu, J.: Age estimation guided convolutional neural network for age-invariant face recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 503–511 (2017). https://doi.org/10.1109/CVPRW.2017.77

Download references

Acknowledgments

This work has been partially supported by the Swedish Research Council (Dnr 2020-04652; Dnr 2022-02056) in the projects The City’s Faces. Visual culture and social structure in Stockholm 1880-1930 and The International Centre for Evidence-Based Criminal Law (EB-CRIME). The computations were performed on resources provided by SNIC through UPPMAX under project SNIC 2021/22-918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Hast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hast, A. (2023). Age-Invariant Face Recognition Using Face Feature Vectors and Embedded Prototype Subspace Classifiers. In: Blanc-Talon, J., Delmas, P., Philips, W., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2023. Lecture Notes in Computer Science, vol 14124. Springer, Cham. https://doi.org/10.1007/978-3-031-45382-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45382-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45381-6

  • Online ISBN: 978-3-031-45382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics