Skip to main content

Weakly Synchronous Systems with Three Machines Are Turing Powerful

  • Conference paper
  • First Online:
Reachability Problems (RP 2023)

Abstract

Communicating finite-state machines (CFMs) are a Turing powerful model of asynchronous message-passing distributed systems. In weakly synchronous systems, processes communicate through phases in which messages are first sent and then received, for each process. Such systems enjoy a limited form of synchronization, and for some communication models, this restriction is enough to make the reachability problem decidable. In particular, we explore the intriguing case of p2p (FIFO) communication, for which the reachability problem is known to be undecidable for four processes, but decidable for two. We show that the configuration reachability problem for weakly synchronous systems of three processes is undecidable. This result is heavily inspired by our study on the treewidth of the Message Sequence Charts (MSCs) that might be generated by such systems. In this sense, the main contribution of this work is a weakly synchronous system with three processes that generates MSCs of arbitrarily large treewidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not explicitly use tree-decompositions, we refer to [4] for their formal definitions.

References

  1. Akroun, L., Salaün, G.: Automated verification of automata communicating via FIFO and bag buffers. Formal Methods Syst. Des. 52(3), 260–276 (2018). https://doi.org/10.1007/s10703-017-0285-8

  2. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28–April 1, 2011, pp. 795–804. ACM (2011)

    Google Scholar 

  3. Basu, S., Bultan, T.: On deciding synchronizability for asynchronously communicating systems. Theor. Comput. Sci. 656, 60–75 (2016). https://doi.org/10.1016/j.tcs.2016.09.023

  4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-3975(97)00228-4

  5. Bollig, B., Di Giusto, C., Finkel, A., Laversa, L., Lozes, É., Suresh, A.: A unifying framework for deciding synchronizability. In: Haddad, S., Varacca, D. (eds.) 32nd International Conference on Concurrency Theory, CONCUR 2021, August 24–27, 2021. LIPIcs, vol. 203, pp. 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Virtual Conference (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.14

  6. Bollig, B., Di Giusto, C., Finkel, A., Laversa, L., Lozes, É., Suresh, A.: A unifying framework for deciding synchronizability (extended version). Technical report (2021). https://hal.archives-ouvertes.fr/hal-03278370/document

  7. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying message passing programs under bounded asynchrony. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 372–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2_23

    Chapter  Google Scholar 

  8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983). https://doi.org/10.1145/322374.322380

  9. Charron-Bost, B., Mattern, F., Tel, G.: Synchronous, asynchronous, and causally ordered communication. Distributed Comput. 9(4), 173–191 (1996). https://doi.org/10.1007/s004460050018

  10. Di Giusto, C., Ferré, D., Laversa, L., Lozes, É.: A partial order view of message-passing communication models. Proc. ACM Program. Lang. 7(POPL), 1601–1627 (2023). https://doi.org/10.1145/3571248

  11. Di Giusto, C., Ferré, D., Lozes, E., Nisse, N.: Weakly synchronous systems with three machines are Turing powerful. Technical report, Université Côte d’Azur, CNRS, I3S, France; Université Côte d’Azur, Inria, CNRS, I3S, France (2023). https://hal.science/hal-04182953

  12. Finkel, A., Lozes, É.: Synchronizability of communicating finite state machines is not decidable. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10–14, 2017, Warsaw, Poland. LIPIcs, vol. 80, pp. 122:1–122:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  13. Finkel, A., Sangnier, A.: Reversal-bounded counter machines revisited. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 323–334. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4_26

    Chapter  Google Scholar 

  14. Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded channels. Fundam. Informaticae 80(1-3), 147–167 (2007). http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09

  15. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of communicating pushdown systems. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 267–281. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12032-9_19

    Chapter  MATH  Google Scholar 

  16. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM (JACM) 25(1), 116–133 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. ITU-T: Recommendation ITU-T Z.120: Message sequence chart (MSC). Technical report, International Telecommunication Union, Geneva (2011)

    Google Scholar 

  18. Lohrey, M., Muscholl, A.: Bounded MSC communication. In: Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 295–309. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6_21

    Chapter  Google Scholar 

  19. Mayr, E.W.: An algorithm for the general petri net reachability problem. In: Symposium on the Theory of Computing (1981)

    Google Scholar 

  20. Torre, S.L., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent queue systems. In: Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29–April 6, 2008. Proceedings, pp. 299–314 (2008). https://doi.org/10.1007/978-3-540-78800-3_21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Di Giusto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Giusto, C., Ferre’, D., Lozes, E., Nisse, N. (2023). Weakly Synchronous Systems with Three Machines Are Turing Powerful. In: Bournez, O., Formenti, E., Potapov, I. (eds) Reachability Problems. RP 2023. Lecture Notes in Computer Science, vol 14235. Springer, Cham. https://doi.org/10.1007/978-3-031-45286-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45286-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45285-7

  • Online ISBN: 978-3-031-45286-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics