Skip to main content

Recongo: Bounded Combinatorial Reconfiguration with Answer Set Programming

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

We develop an approach called bounded combinatorial reconfiguration for solving combinatorial reconfiguration problems based on Answer Set Programming. The general task is to study the solution spaces of source combinatorial problems and to decide whether or not there are sequences of feasible solutions that have special properties. The resulting recongo solver covers all metrics of the solver track in the most recent international competition on combinatorial reconfiguration (CoRe Challenge 2022). recongo ranked first in the shortest metric of the single-engine solvers track.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://potassco.org/clingo/python-api/current/.

  2. 2.

    https://core-challenge.github.io/2022/.

References

  1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  2. Biere, A.: Bounded model checking. In: Handbook of Satisfiability, pp. 457–481. IOS Press, Amsterdam (2009)

    Google Scholar 

  3. Bonsma, P.S., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brewster, R.C., McGuinness, S., Moore, B.R., Noel, J.A.: A dichotomy theorem for circular colouring reconfiguration. Theor. Comput. Sci. 639, 1–13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gebser, M., et al.: Potassco User Guide. 2 edn. University of Potsdam (2015). http://potassco.org

  7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan and Claypool Publishers, San Rafael (2012)

    MATH  Google Scholar 

  8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  9. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: Computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haddadan, A., et al.: The complexity of dominating set reconfiguration. Theor. Comput. Sci. 651, 37–49 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)

    Google Scholar 

  12. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ito, T., Kaminski, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discrete Appl. Math. 160(15), 2199–2207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the parameterized complexity for token jumping on graphs. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06089-7_24

    Chapter  Google Scholar 

  15. Ito, T., Ono, H., Otachi, Y.: Reconfiguration of cliques in a graph. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 212–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_19

    Chapter  MATH  Google Scholar 

  16. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own ASP-based system?! Theory Pract. Logic Program. 23(1), 299–361 (2023)

    Article  MathSciNet  Google Scholar 

  18. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Proceedings of the 10th European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363 (1992)

    Google Scholar 

  19. Kautz, H.A., Selman, B.: Pushing the envelope: planning, propositional logic and stochastic search. In: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI 1996), pp. 1194–1201 (1996)

    Google Scholar 

  20. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of Boolean formulas. SIAM J. Discrete Math. 31(3), 2185–2200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Soh, T., Okamoto, Y., Ito, T.: Core challenge 2022: solver and graph descriptions. CoRR abs/2208.02495 (2022)

    Google Scholar 

  24. Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. J. Comb. Optim. 32(4), 1182–1195 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Takaoka, A.: Complexity of Hamiltonian cycle reconfiguration. Algorithms 11(9), 140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yamada, Y., Banbara, M., Inoue, K., Schaub, T.: Bounded combinatorial reconfiguration with answer set programming. CoRR abs/2307.10688 (2023)

    Google Scholar 

  27. Hirate T., et al.: Hamiltonian cycle reconfiguration with answer set programming. JELIA 2023. to appear

    Google Scholar 

Download references

Acknowledgements

The research was supported by JSPS KAKENHI Grant Number JP20H05964, ROIS NII Open Collaborative Research 2023 (23FP04), JST CREST Grant Number JPMJCR22D3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutsunori Banbara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamada, Y., Banbara, M., Inoue, K., Schaub, T. (2023). Recongo: Bounded Combinatorial Reconfiguration with Answer Set Programming. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics